A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Molecular simulation of gas adsorption, diffusion, and permeation in hydrated Nafion membranes. | LitMetric

Molecular simulation of gas adsorption, diffusion, and permeation in hydrated Nafion membranes.

J Phys Chem B

Institute for Fuel Cell Innovation, National Research Council of Canada, 4250 Wesbrook Mall, Vancouver, British Columbia V6T 1W5, Canada.

Published: October 2011

Molecular simulations were performed to characterize hydrated Nafion membranes in terms of gas adsorption, diffusion, and permeation. The experimental results validate the molecular model of Nafion with respect to material density, morphology, free volume, and water diffusivity. Nafion's adsorption property is examined in terms of the solubility and adsorption isotherms for gases, including H(2), O(2), and N(2). The adsorption capacity of hydrated Nafion is shown to be strong for O(2) and N(2) but not for H(2). Due to the dilution effect, N(2) is able to suppress the loading of O(2) and protect the fuel cell from fuel crossover. The dynamic behaviors of H(2) and O(2) are represented by self-diffusion coefficients, with the results showing that H(2) diffusion in Nafion membranes is nearly 1 order of magnitude faster than O(2) diffusion. The effects of water content and the concentration of adsorbed gases were verified, and a close correlation of Nafion free volume to gas transport properties was revealed. On the basis of the solution-diffusion mechanism, the permeabilities of H(2) and O(2) in hydrated Nafion membranes are calculated and compared with corresponding experiments, and the permeability of H(2) is found to be approximately twice that of O(2).

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp204141bDOI Listing

Publication Analysis

Top Keywords

hydrated nafion
16
nafion membranes
16
gas adsorption
8
adsorption diffusion
8
diffusion permeation
8
free volume
8
nafion
7
adsorption
5
molecular simulation
4
simulation gas
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!