Absolute absorption cross sections for selected lines of the OH stretch overtone 2ν(1) of the cis-isomer of nitrous acid HONO have been measured in the range 6623.6-6645.6 cm(-1) using the continuous wave cavity ring-down spectroscopy (cw-CRDS) technique. HONO has been generated by two different, complementary methods: in the first method, HONO has been produced by pulsed photolysis of H(2)O(2)/NO mixture at 248 nm, and in the second method HONO has been produced in a continuous manner by flowing humidified N(2) over 5.2 M HCl and 0.5 M NaNO(2) solutions. Laser photolysis synchronized with the cw-CRDS technique has been used to measure the absorption spectrum of HONO produced in the first method, and a simple cw-CRDS technique has been used in the second method. The first method, very time-consuming, allows for an absolute calibration of the absorption spectrum by comparison with the well-known HO(2) absorption cross section, while the second method is much faster and leads to a better signal-to-noise ratio. The strongest line in this wavelength range has been found at 6642.51 cm(-1) with σ = (5.8 ± 2.2) × 10(-21) cm(2).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp203001y | DOI Listing |
Sensors (Basel)
November 2019
Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China.
Due to their advantages of having a wide bandwidth, low cost, and being easy to obtain, traditional photodetectors (PDs) are being widely applied in measurements of transient signals. The spatial inhomogeneity of such PD temporal responses was measured directly to account for the PD spatial effect of decay rate due to poor alignment in continuous wave cavity ringdown spectroscopy (CW-CRDS) experiments. Based on the measurements of three PDs (i.
View Article and Find Full Text PDFEnviron Sci Technol
February 2017
Université Lille, CNRS, UMR 8522 - PC2A - Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000 Lille, France.
The reaction between CHO and OH radicals has been shown to be fast and to play an appreciable role for the removal of CHO radials in remote environments such as the marine boundary layer. Two different experimental techniques have been used here to determine the products of this reaction. The HO yield has been obtained from simultaneous time-resolved measurements of the absolute concentration of CHO, OH, and HO radicals by cw-CRDS.
View Article and Find Full Text PDFJ Phys Chem A
November 2016
Université Lille, CNRS, UMR 8522-PC2A-Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000 Lille, France.
The reaction between CHO and OH radicals has been studied in a laser photolysis cell using the reaction of F atoms with CH and HO for the simultaneous generation of both radicals, with F atoms generated through 248 nm photolysis of XeF. An experimental setup combining cw-Cavity Ring Down Spectroscopy (cw-CRDS) and high repetition rate laser-induced fluorescence (LIF) to a laser photolysis cell has been used. The absolute concentration of CHO was measured by cw-CRDS, while the relative concentration of OH(v = 0) radicals was determined by LIF.
View Article and Find Full Text PDFJ Phys Chem A
September 2016
CNRS, UMR 8522 - PC2A - Physicochimie des Processus de Combustion et de l'Atmosphère, Université Lille, F-59000 Lille, France.
The absorption cross section of an overtone transition of OH radicals at 7028.831 cm(-1) has been measured using an improved experimental setup coupling laser photolysis to three individual time-resolved detection techniques. Time-resolved relative OH radical profiles were measured by laser-induced fluorescence (LIF), and their absolute profiles have been obtained by cw-cavity ring-down spectroscopy (cw-CRDS).
View Article and Find Full Text PDFJ Chem Phys
May 2015
Laboratoire de Physico-Chimie de l'Atmosphère, Université du Littoral Côte d'Opale, 189A Avenue Maurice Schumann, 59140 Dunkerque, France.
Around 398 nm, the jet-cooled-spectrum of NO2 exhibits a well identified dissociation threshold (D0). Combining the continuous-wave absorption-based cavity ringdown spectroscopy technique and laser induced fluorescence detection, an energy range of ∼25 cm(-1) is analyzed at high resolution around D0. In addition to the usual molecular transitions to long-lived energy levels, ∼115 wider resonances are observed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!