For the first time, laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) was used to carry out isotopic measurement on single submicrometer-size uranium particles. The analytical procedure was applied on two particle-containing samples already analyzed in the same laboratory by established techniques for particle analysis: combination of the fission track technique with thermo-ionization mass spectrometry (FT-TIMS) and secondary ion mass spectrometry (SIMS). Particles were extracted from their initial matrix with ethanol and deposited on a polycarbonate disk where they were fixed in a layer of an organic compound (collodion). Prior to the isotopic analysis, particles were precisely located on the disk's surface by scanning electron microscopy (SEM) for one sample and using the fission track technique for the other sample. Most of the particles were smaller than 1 μm, and their (235)U content was in the femtogram range. (235)U/(238)U ratios were successfully analyzed for all located particles using a nanosecond-UV laser (Cetac LSX 213 nm) coupled to a quadrupole-based ICPMS (Thermo "X-Series II"). LA-ICPMS results, although less precise and accurate (typically 10%) than the ones obtained by FT-TIMS and SIMS due to short (20-40 s), transient, and noisy signals, are in good agreement with the certified values or with the results obtained with other techniques. Thanks to good measurement efficiency (~6 × 10(-4)) and high signal/noise ratio during the analysis, LA-ICPMS can be considered a very promising technique for fast particle analysis, provided that uranium-bearing particles are fixed on the sample holder and located prior to isotope measurement.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac201596tDOI Listing

Publication Analysis

Top Keywords

mass spectrometry
16
nanosecond-uv laser
8
laser ablation-inductively
8
ablation-inductively coupled
8
coupled plasma
8
plasma mass
8
isotopic analysis
8
single submicrometer-size
8
submicrometer-size uranium
8
uranium particles
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!