The population of soil mesofauna in the basin of the small river subzone of the northern taiga (Karelia) has been investigated. It was shown that indexes of the number and mass of soil mesofauna in the landscape-ecological row ofbiogeocenosises are maximal in floodplain soils. The taxonomic composition and structure of domination of the soil mesofauna population depends on the location of biogeocenosis in the landscape: earthworms are dominants in riverine floodplain biogeocenosises, and larvae of elaterids and spiders prevail in the places outside of floodplains. The abundance of saprophytic invertebrates in floodplain biogeocenosises results in formation of humus of the mull type. A group of animals with mixed type of nutrition dominates in the places outside of floodplain soils that are related with humus of the moder-mor type. The population of rove beetles (Staphylinidae) allows the division of biogeocenosises into two groups according to their position in the landscape.
Download full-text PDF |
Source |
---|
J Environ Manage
December 2024
State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
In mountainous regions, global warming has changed the biological diversity and community structure of both aboveground and belowground organisms, and it may cause biota to move from lower altitudes to higher altitudes. However, our understanding of such migrations of soil mesofauna caused by global warming on soil processes and functions remains limited. We carried out a 79-day experiment comprising treatments without mesofauna (WM), native mesofauna (NM), migratory mesofauna (MM), and both native and migratory mesofauna together (TM) to reveal the effects of soil mesofauna migration on greenhouse gas emissions, ecosystem multifunctionality, and the underlying mechanisms.
View Article and Find Full Text PDFSci Rep
September 2024
Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04154, Košice, Slovakia.
Caves represent a specific environment with a special microclimate and fauna adapted to it. However, we have still a restricted knowledge on soil fauna communities in an environments with a marked microclimate gradient at the interface between cave and surface habitats. In the present study, we investigated the community patterns of dominant soil microarthropod group, oribatid mites, and their relationship to environmental factors across the microclimate gradient along a transect with seven study sites from cold and wet cave entrance zone to warm and drier deciduous forest.
View Article and Find Full Text PDFChem Sci
September 2024
Technische Universität Braunschweig, Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
Springtails (Collembola) are important members of the soil mesofauna. They are small, often less than 1-2 mm in length. A typical escape response of most surface-living species is to jump, using their furca.
View Article and Find Full Text PDFJ Therm Biol
July 2024
Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316, Oslo, Norway.
Temperature drives adaptation in life-history traits through direct effects on physiological processes. However, multiple life-history traits co-evolve as a life-history strategy. Therefore, physiological limitations constraining the evolution of trait means and phenotypic plasticity can be larger for some traits than the others.
View Article and Find Full Text PDFSci Total Environ
September 2024
Systematic Botany and Functional Biodiversity, Leipzig University, Johannisallee 21, 04103 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany; Max-Planck Institute for Biogeochemistry, Hans-Knöll-Straße 10, 07745 Jena, Germany.
Forest canopy gaps can influence understorey microclimate and ecosystem functions such as decomposition. Gaps can arise from silviculture or tree mortality, increasingly influenced by climate change. However, to what degree canopy gaps affect the buffered microclimate in the understorey under macroclimatic changes is unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!