Comprehensive imaging of the cardiovascular system of murine models of atherosclerosis requires high spatial and temporal resolution as well as a high soft tissue contrast. High-field (≥7 T) experimental magnetic resonance imaging can provide noninvasive, high-resolution images of the murine cardiovascular system. High-field scanners, however, require special equipment and imaging protocols. The aim of this chapter is to provide instructions on how to obtain morphological and functional data on the murine cardiovascular system in animal models of atherosclerotic disease on a very high-field scanner (17.6 T). Equipment requirements are presented, and a comprehensive description of the methods needed to complete a magnetic resonance imaging exam, including the animal preparation, imaging, and image analysis are discussed. In addition, common problems during high-field MRI experiments and methods to validate MRI results are reviewed. The steps can be adopted to other MRI scanners and modification of the imaging parameters might allow for a more individual assessment of cardiovascular diseases in a number of transgenic mouse models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-61779-219-9_21 | DOI Listing |
Lancet Reg Health West Pac
January 2025
Division of Nephrology, National Clinical Research Centre for Kidney Disease, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
Background: Early diagnosis of chronic kidney disease (CKD) is crucial for timely intervention to delay disease progression and improve patient outcomes. However, data for clinical characteristics of Chinese patients with undiagnosed, early-stage CKD are lacking.
Methods: REVEAL-CKD is a multinational, observational study using real-world data in selected countries to describe factors associated with undiagnosed stage 3 CKD, time to diagnosis, and CKD management post diagnosis.
J Bioinform Syst Biol
January 2024
Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, United States.
Purpose: Nitric oxide (NO) is recognized as an important biological mediator that controls several physiological functions, and evidence is now emerging that this molecule may play a significant role in the postnatal control of ocular growth and myopia development. We therefore sought to understand the role that nitric oxide plays in visually-guided ocular growth in order to gain insight into the underlying mechanisms of this process.
Methods: Choroids were incubated in organ culture in the presence of the NO donor, PAPA- NONOate (1.
Front Immunol
January 2025
Laboratory of Immunohematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece.
Obesity is a rapidly growing health problem worldwide, affecting both adults and children and increasing the risk of chronic diseases such as type 2 diabetes, hypertension and cardiovascular disease (CVD). In addition, obesity is closely linked to chronic kidney disease (CKD) by either exacerbating diabetic complications or directly causing kidney damage. Obesity-related CKD is characterized by proteinuria, lipid accumulation, fibrosis and glomerulosclerosis, which can gradually impair kidney function.
View Article and Find Full Text PDFClin Transl Radiat Oncol
March 2025
Smilow Center for Translational Research, Room 8-136, Univ of Pennsylvania, Perelman School of Medicine, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA 19104, USA.
Cardiac stereotactic body radiotherapy is a promising noninvasive treatment for patients with refractory ventricular tachycardia. With the aim to prove feasibility of a novel image guided radiotherapy and heart motion gating device, cardiac proton radiotherapy was performed using a porcine model. Using a novel adaptation of γ - H2AX tissue staining techniques, we have been able to localize a radiation beam in large animal tissue to assess targeting accuracy within a defined field.
View Article and Find Full Text PDFJ Mark Access Health Policy
March 2025
BHF Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, UK;
This study illustrates the utility of a mixed-methods approach in assessing the value of an example novel technology-biosensor-integrated self-reporting arteriovenous grafts (smart AVGs). Currently in preclinical development, the device will detect arteriovenous graft stenosis (surveillance-only use case) and treat stenosis (interventional use case). The approach to value assessment adopted in this study was multifaceted, with one stage informing the next and comprised a stakeholder engagement with clinical experts to explore the device's clinical value, a cost-utility analysis (CUA) from a US Medicare perspective to estimate pricing headroom, and an investment model estimating risk-adjusted net present value analysis (rNPVs) to determine commercial viability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!