Perfusion MRI is a tool to assess the spatial distribution of microvascular blood flow. Arterial spin labeling (ASL) is shown here to be advantageous for quantification of cerebral microvascular blood flow (CBF) in rodents. This technique is today ready for assessment of a variety of murine models of human pathology including those associated with diffuse microvascular dysfunction. This chapter provides an introduction to the principles of CBF measurements by MRI along with a short overview over applications in which these measurements were found useful. The basics of commonly employed specific arterial spin-labeling techniques are described and theory is outlined in order to give the reader the ability to set up adequate post-processing tools. Three typical MR protocols for pulsed ASL on two different MRI systems are described in detail along with all necessary sequence parameters and technical requirements. The importance of the different parameters entering theory is discussed. Particular steps for animal preparation and maintenance during the experiment are given, since CBF regulation is sensitive to a number of experimental physiological parameters and influenced mainly by anesthesia and body temperature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-61779-219-9_6 | DOI Listing |
Radiographics
February 2025
From the Department of Radiology (S.Q., R.C., J.C.C., M.M., B.D.A., R.A.) and the Division of Cardiology, Department of Medicine (V.A., J.E.W., R.L.W., D.C.L.), Northwestern University Feinberg School of Medicine, 737 N Michigan Ave, Ste 1600, Chicago, IL 60611; Prince Charles Hospital, Chermside, Queensland, Australia (V.A.); and the Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, Ill (M.M.).
Orthotopic heart transplant (OHT) is a well-established therapy for end-stage heart failure that leads to improved long-term survival rates, with careful allograft surveillance essential for optimizing clinical outcomes after OHT. Unfortunately, complications can arise after OHT that can compromise the success of the OHT. Cardiac MRI is continually evolving, with a range of advanced techniques that can be applied to evaluate allograft structure and function.
View Article and Find Full Text PDFJ Neurol Surg B Skull Base
February 2025
Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States.
Transpterygoid approaches to the skull base require dissection of the sphenopalatine artery, potentially compromising the option to harvest an ipsilateral nasoseptal flap (NSF) for reconstruction. In cases where other reconstructive options are limited, it may be necessary to utilize a NSF ipsilateral to the transpterygoid approach. Here, we describe the technique of NSF pedicle preservation with reconstruction outcomes.
View Article and Find Full Text PDFNature
January 2025
German Centre for Cardiovascular Research (DZHK), Partner Site Lower Saxony, Göttingen, Germany.
Cardiomyocytes can be implanted to remuscularize the failing heart. Challenges include sufficient cardiomyocyte retention for a sustainable therapeutic impact without intolerable side effects, such as arrhythmia and tumour growth. We investigated the hypothesis that epicardial engineered heart muscle (EHM) allografts from induced pluripotent stem cell-derived cardiomyocytes and stromal cells structurally and functionally remuscularize the chronically failing heart without limiting side effects in rhesus macaques.
View Article and Find Full Text PDFWorld J Gastroenterol
January 2025
Department of Radiology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Changzhou 213000, Jiangsu Province, China.
Background: Anxiety is a common comorbidity in patients with Crohn's disease (CD). Data on the imaging characteristics of brain microstructure and cerebral perfusion in CD with anxiety are limited.
Aim: To compare the imaging characteristics of brain microstructure and cerebral perfusion among CD patients with or without anxiety and healthy individuals.
Cereb Circ Cogn Behav
January 2025
Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK.
Arterial spin labelling (ASL) enables non-invasive quantification of regional brain perfusion using MRI. ASL was used in the Reducing Pathology in Alzheimer's Disease through Angiotensin TaRgeting (RADAR) multi-centre trial to pilot the assessment of the effects of the anti-hypertension drug losartan on cerebral blood flow (CBF). In the multi-centre setting, disparities in ASL implementation on scanners from different manufacturers lead to inherent differences in measured CBF and its associated parameters (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!