To further the understanding of functional α6α5*-nicotinic acetylcholine receptors (nAChR; the asterisk (*) indicates known or possible presence of other subunits), we have heterologously expressed in oocytes different, mouse or human, nAChR subunit combinations. Coexpression with wild-type α5 subunits or chimeric α5/β3 subunits (in which the human α5 subunit N-terminal, extracellular domain is linked to the remaining domains of the human β3 subunit) almost completely abolishes the very small amount of function seen for α6β4*-nAChR and does not induce function of α6β2*-nAChR. Coexpression with human α5(V9)'(S) subunits bearing a valine 290 to serine mutation in the 9' position of the second transmembrane domain does not rescue the function of α6β4*-nAChR or induce function of α6β2*-nAChR. However, coexpression with mutant chimeric α5/β3(V9)'(S) subunits has a gain-of-function effect (higher functional expression and agonist sensitivity and spontaneous opening inhibited by mecamylamine) on α6β4*-nAChR. Moreover, N143D + M145V mutations in the α6 subunit N-terminal domain enable α5/β3(V9)'(S) subunits to have a gain-of-function effect on α6β2*-nAChR. nAChR containing chimeric α6/α3 subunits plus either β2 or β4 subunits have some function that is modulated in the presence of α5 or α5/β3 subunits. Coexpression with α5/β3(V9)'(S) subunits has a gain-of-function effect more pronounced than that in the presence of α5(V9)'(S) subunits. Gain-of-function effects are dependent, sometimes subtly, on the nature and apparently the extracellular, cytoplasmic, and/or transmembrane domain topology of partner subunits. These studies yield insight into assembly of functional α6α5*-nAChR and provide tools for development of α6*-nAChR-selective ligands that could be important in the treatment of nicotine dependence, and perhaps other neurological diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3207434PMC
http://dx.doi.org/10.1074/jbc.M111.264044DOI Listing

Publication Analysis

Top Keywords

subunits gain-of-function
16
subunits
13
α5/β3v9's subunits
12
α5 subunits
8
α5/β3 subunits
8
subunit n-terminal
8
function α6β4*-nachr
8
α6β4*-nachr induce
8
induce function
8
function α6β2*-nachr
8

Similar Publications

Human α10 nicotinic acetylcholine receptor subunits assemble to form functional receptors.

J Biol Chem

January 2025

School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA; Department of Psychiatry, University of Utah, Salt Lake City, Utah, USA; George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah, USA.

Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels. In mammals, there are 16 individual nAChR subunits allowing for numerous possible heteromeric compositions. nAChRs assembled from α7 or α9 subunits will form as homopentamers.

View Article and Find Full Text PDF

Aims: Mutations in the cardiac ryanodine receptor (RyR2) are associated with catecholaminergic polymorphic ventricular tachycardia (CPVT). This study investigates the underlying molecular mechanisms for CPVT mutations within the RyR2 N-terminus domain (NTD).

Methods And Results: We consulted the high-resolution RyR2 structure in both open and closed configuration to identify mutations G357S/R407I and A77T, which lie within the NTD intra- and inter-subunit interface with the Core Solenoid (CSol), respectively.

View Article and Find Full Text PDF

Alleviating the Effects of Short QT Syndrome Type 3 by Allele-Specific Suppression of the Mutant Allele.

Int J Mol Sci

December 2024

Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.

Short QT syndrome type 3 (SQTS3 or SQT3), which is associated with life-threatening cardiac arrhythmias, is caused by heterozygous gain-of-function mutations in the gene. This gene encodes the pore-forming α-subunit of the ion channel that carries the cardiac inward rectifier potassium current (I). These gain-of-function mutations either increase the amplitude of I or attenuate its rectification.

View Article and Find Full Text PDF

The PKM2/HIF-1α Axis is Involved in the Pathogenesis of Endometriosis via TGF-β1 under Endometrial Polyps.

Front Biosci (Landmark Ed)

December 2024

Department of Reproductive Medicine, Dongying People's Hospital, 257091 Dongying, Shandong, China.

Background: Endometriosis patients exhibit a cancer-like glycolytic phenotype. The pyruvate kinase M2 (PKM2)/hypoxia-inducible factor-1 alpha (HIF-1α) axis plays important roles in glycolysis-related diseases, but its role in patients with endometrial polyps (EPs) combined with endometriosis has not been validated.

Methods: EP samples were collected from patients with and without endometriosis.

View Article and Find Full Text PDF

Poststroke hyperglycemia dysregulates cap-dependent translation in neural cells.

Life Sci

January 2025

Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Medicine, and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States; Department of Pharmaceutical Sciences, School of Pharmacy, Morgantown, WV, United States; Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, United States. Electronic address:

Aims: Post stroke hyperglycemia has been shown to deter functional recovery. Earlier findings have indicated the cap-dependent translation regulator 4E-BP1 is detrimentally upregulated in hyperglycemic conditions. The present study aims to test the hypothesis that hyperglycemic ischemic reperfusion injury (I/R) affects normal protein translation poststroke.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!