Environmental Protection Agency's ToxCast project is profiling the in vitro bioactivity of chemicals to assess pathway-level and cell-based signatures that correlate with observed in vivo toxicity. We hypothesized that developmental toxicity in guideline animal studies captured in the ToxRefDB database would correlate with cell-based and cell-free in vitro high-throughput screening (HTS) data to reveal meaningful mechanistic relationships and provide models identifying chemicals with the potential to cause developmental toxicity. To test this hypothesis, we built statistical associations based on HTS and in vivo developmental toxicity data from ToxRefDB. Univariate associations were used to filter HTS assays based on statistical correlation with distinct in vivo endpoint. This revealed 423 total associations with distinctly different patterns for rat (301 associations) and rabbit (122 associations) across multiple HTS assay platforms. From these associations, linear discriminant analysis with cross-validation was used to build the models. Species-specific models of predicted developmental toxicity revealed strong balanced accuracy (> 70%) and unique correlations between assay targets such as transforming growth factor beta, retinoic acid receptor, and G-protein-coupled receptor signaling in the rat and inflammatory signals, such as interleukins (IL) (IL1a and IL8) and chemokines (CCL2), in the rabbit. Species-specific toxicity endpoints were associated with one another through common Gene Ontology biological processes, such as cleft palate to urogenital defects through placenta and embryonic development. This work indicates the utility of HTS assays for developing pathway-level models predictive of developmental toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1093/toxsci/kfr220DOI Listing

Publication Analysis

Top Keywords

developmental toxicity
24
toxicity
8
high-throughput screening
8
hts assays
8
developmental
6
associations
6
hts
5
predictive models
4
models prenatal
4
prenatal developmental
4

Similar Publications

Insights into Toxicological Mechanisms of Per-/polyfluoroalkyl Substances by Using Omics-centered Approaches.

Environ Pollut

January 2025

College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China. Electronic address:

The extensive presence of per-/polyfluoroalkyl substances (PFASs) in the environment and their adverse effects on organisms have garnered increasing concern. With the shift of industrial development from legacy to emerging PFASs, expanding the understanding of molecular responses to legacy and emerging PFASs is essential to accurately assess their risks to organisms. Compared with traditional toxicological approaches, omics technologies including transcriptomics, proteomics, metabolomics/lipidomics, and microbiomics allow comprehensive analysis of the molecular changes that occur in organisms after PFAS exposure.

View Article and Find Full Text PDF

The potential endocrine-disrupting of fluorinated pesticides and molecular mechanism of EDPs in cell models.

Ecotoxicol Environ Saf

January 2025

State Key Lab, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China. Electronic address:

Environmental endocrine disruptors constitute a category of exogenous compounds that interfere with the endocrine system's functions in organisms or cells. As a class of particularly representative endocrine-disrupting chemicals, the accumulation of per- and polyfluoroalkyl substances potentially leads to adverse health effects, including hormonal disruptions, developmental issues, and cancer. However, the classification of these disruptors is intricate, and the data on their potential health risks is scattered.

View Article and Find Full Text PDF

Toxicity of antimony in housefly after whole-life-cycle exposure: Changes in growth, development, redox homeostasis, mitochondrial function, and fecundity.

Ecotoxicol Environ Saf

January 2025

Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China. Electronic address:

The increasing utilization of antimony (Sb) in manufacturing industries has led to the emergence of Sb contamination in the environment as a significant public health concern. To elucidate the toxicity of Sb and its mechanism of action, this study aimed to investigate the adverse effects of Sb on a cosmopolitan insect, housefly (Musca domestica), under a whole life cycle (from embryonic to adult stage) exposure through the examination of a suite of parameters, including biological, physiological, behavioral, and molecular endpoints. A range of Sb concentrations, including moderate contamination (0.

View Article and Find Full Text PDF

Background: Exposure to environmental chemicals such as lead (Pb) during vulnerable developmental periods and even in adult stage can result in adverse health outcomes later in life. Human cohort studies have demonstrated associations between Pb exposure and Alzheimer's Disease (AD) onset in later life which were further corroborated by findings from animal studies. The molecular pathway linking Pb exposure and increased AD risk, however, remains elusive.

View Article and Find Full Text PDF

The cellular concentrations of splicing factors (SFs) are critical for controlling alternative splicing. Most serine and arginine-enriched (SR) protein SFs regulate their own concentration via a homeostatic feedback mechanism that involves regulation of inclusion of non-coding 'poison exons' (PEs) that target transcripts for nonsense-mediated decay. The importance of SR protein PE splicing during animal development is largely unknown despite PE ultra-conservation across animal genomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!