Aggregation of amyloid-β (Aβ) as toxic oligomers and amyloid plaques within the brain appears to be the pathogenic event that initiates Alzheimer's disease (AD) lesions. One therapeutic strategy has been to reduce Aβ levels to limit its accumulation. Activation of certain neurotransmitter receptors can regulate Aβ metabolism. We assessed the ability of serotonin signaling to alter brain Aβ levels and plaques in a mouse model of AD and in humans. In mice, brain interstitial fluid (ISF) Aβ levels were decreased by 25% following administration of several selective serotonin reuptake inhibitor (SSRI) antidepressant drugs. Similarly, direct infusion of serotonin into the hippocampus reduced ISF Aβ levels. Serotonin-dependent reductions in Aβ were reversed if mice were pretreated with inhibitors of the extracellular regulated kinase (ERK) signaling cascade. Chronic treatment with an SSRI, citalopram, caused a 50% reduction in brain plaque load in mice. To test whether serotonin signaling could impact Aβ plaques in humans, we retrospectively compared brain amyloid load in cognitively normal elderly participants who were exposed to antidepressant drugs within the past 5 y to participants who were not. Antidepressant-treated participants had significantly less amyloid load as quantified by positron emission tomography (PET) imaging with Pittsburgh Compound B (PIB). Cumulative time of antidepressant use within the 5-y period preceding the scan correlated with less plaque load. These data suggest that serotonin signaling was associated with less Aβ accumulation in cognitively normal individuals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3169155 | PMC |
http://dx.doi.org/10.1073/pnas.1107411108 | DOI Listing |
Curr Pharm Des
January 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey.
Background: Psychosis, marked by detachment from reality, includes symptoms like hallucinations and delusions. Traditional herbal remedies like kratom are gaining attention for psychiatric conditions. This was aimed at comprehending the molecular mechanisms of Kratom's antipsychotic effects utilizing a multi-modal computational approach.
View Article and Find Full Text PDFJ Recept Signal Transduct Res
January 2025
Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey.
Serotonin (5-HT) is a neurotransmitter found throughout the human body that regulates many physiological events arising from the brain and central nervous system (CNS), such as sleep and appetite. However, it has many other functions in systems outside. In addition to the routine expression of 5-HT7 receptors in CNS regions, such as the pituitary gland, spinal cord, and hippocampus, many studies have reported the expression of these receptors in pathological conditions outside.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Cleveland Clinic, Cleveland, OH, USA.
Background: Alzheimer's Disease (AD) risk variants APOE4 and TREM2-R47H have been shown to impact glial cell functions and transcriptional profiles. We hypothesize that TREM2-APOE may have synergistic effects in driving pathogenesis and disease progression of AD in a cell type-specific manner.
Methods: We investigated cell-type specific transcriptional changes associated with APOE4- and TREM2-R47H-carrier status.
Front Psychiatry
December 2024
Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.
Introduction: Aggression and self-harm disproportionately occur in youths preoccupied with social status tracking. These pathological conditions are linked to a serotonin (5-HT) deficit in the brain. Ablation of 5-HT biosynthesis by tryptophan hydroxylase 2 knockout (TPH2-KO) increases aggression in rodents.
View Article and Find Full Text PDFSci Rep
December 2024
Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul, 02447, Korea.
To understand the action mechanism of probiotics against postmenopausal symptoms, we examined the effects of Lactococcus lactis P32 (P) and Bifidobacterium bifidum P45 (P), which suppressed interleukin (IL)-6 and receptor activator of nuclear factor-κB (RANK) ligand (RNAKL) expression in Gardnerella vaginalis (Gv)-stimulated macrophages, on vaginitis, osteoporosis, and depression/cognitive impairment (DC) in mice with vaginally infected Gv, ovariectomy (Ov), or Ov/Gv (oG). Oral administration of P or P decreased Gv-induced DC-like behavior and tumor necrosis factor (TNF)-α, IL-6, RANK, and/or RANKL expression in the vagina, bone, hypothalamus, hippocampus, and colon, while Gv-suppressed bone osteoprotegerin and brain serotonin and brain-derived neurotrophic factor (BDNF) levels increased. They partially shifted vaginal and gut dysbiosis in Gv-infected mice to the gut microbiota composition in normal control mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!