A joint shape evolution approach to medical image segmentation using expectation-maximization algorithm.

Magn Reson Imaging

School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 Singapore.

Published: November 2011

This study proposes an expectation-maximization (EM)-based curve evolution algorithm for segmentation of magnetic resonance brain images. In the proposed algorithm, the evolution curve is constrained not only by a shape-based statistical model but also by a hidden variable model from image observation. The hidden variable model herein is defined by the local voxel labeling, which is unknown and estimated by the expected likelihood function derived from the image data and prior anatomical knowledge. In the M-step, the shapes of the structures are estimated jointly by encoding the hidden variable model and the statistical prior model obtained from the training stage. In the E-step, the expected observation likelihood and the prior distribution of the hidden variables are estimated. In experiments, the proposed automatic segmentation algorithm is applied to multiple gray nuclei structures such as caudate, putamens and thalamus of three-dimensional magnetic resonance imaging in volunteers and patients. As for the robustness and accuracy of the segmentation algorithm, the results of the proposed EM-joint shape-based algorithm outperformed those obtained using the statistical shape model-based techniques in the same framework and a current state-of-the-art region competition level set method.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mri.2011.07.005DOI Listing

Publication Analysis

Top Keywords

hidden variable
12
variable model
12
magnetic resonance
8
segmentation algorithm
8
algorithm
6
model
5
joint shape
4
shape evolution
4
evolution approach
4
approach medical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!