Bioartificial kidneys (BAKs) containing human primary renal proximal tubule cells (HPTCs) have been applied in clinical trials. The results were encouraging, but also showed that more research is required. Animal cells or cell lines are not suitable for clinical applications, but have been mainly used in studies on BAK development as large numbers of such cells could be easily obtained. It is difficult to predict HPTC performance based on data obtained with other cell types. To enable more extensive studies on HPTCs, we have developed a bioreactor containing single hollow fiber membranes that requires relatively small amounts of cells. Special hollow fiber membranes with the skin layer on the outer surface and consisting of polyethersulfone/polyvinylpyrrolidone were developed. The results suggested that such hollow fiber membranes were more suitable for the bioreactor unit of BAKs than membranes with an inner skin layer. An HPTC-compatible double coating was applied to the insides of the hollow fiber membranes, which sustained the formation of functional epithelia under bioreactor conditions. Nevertheless, the state of differentiation of the primary human cells remained a critical issue and should be further addressed. The bioreactor system described here will facilitate further studies on the relevant human cell type.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2011.08.030DOI Listing

Publication Analysis

Top Keywords

hollow fiber
20
fiber membranes
16
primary human
8
bioartificial kidneys
8
skin layer
8
cells
6
hollow
5
fiber
5
membranes
5
performance primary
4

Similar Publications

Blood components play a crucial role in maintaining human health and accurately detecting them is essential for medical diagnostics. A cutting-edge sensor utilizing PCF revealed to precisely identify a wide range of blood components with WBCs (white blood cells), RBCs (red blood cells), HB (hemoglobin), platelets, and plasma. A numerical analysis was performed using COMSOL Multiphysics software to assess the capabilities of the sensor.

View Article and Find Full Text PDF

Tumor and intratumoral pathogen cascade-targeting photothermal nanotherapeutics for boosted immunotherapy of colorectal cancer.

J Control Release

January 2025

State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China. Electronic address:

Clinical benefits of immunotherapy in colorectal cancer (CRC) are limited due to the low immunogenicity and immunosuppressive tumor microenvironment. Fusobacterium nucleatum (Fn) is discovered to colonize CRC tumors and dampen immunotherapy by fostering an immunosuppressive TME. Herein, a controllable "Shielding-deshielding" N-acetylgalactosamine (GalNAc)-derived photothermal nanotherapeutic is developed to mediate cascade targeting toward tumor and intratumoral Fn for enhanced photothermal-immunotherapy.

View Article and Find Full Text PDF

A novel helically twisted photonic crystal fiber (PCF) is designed and proposed for sensing toxic gases with refractive indices ranging from 1.00 to 1.08.

View Article and Find Full Text PDF

Many hydrofluorocarbon refrigerants used in air-conditioning and refrigeration equipment are being phased out based on international restrictions to reduce global warming. Over 1 billion kilograms of hydrofluorocarbons are in use, and recycling is imperative to preventing the release of these greenhouse gases into the atmosphere. We report on composite hollow fiber membranes that can efficiently separate a mixture of difluoromethane and pentafluoroethane that is used worldwide in air conditioners.

View Article and Find Full Text PDF

Learning from history to improve the performance of blood purification devices and dialysis membranes: from engineering points of view.

J Artif Organs

January 2025

Department of Human Environmental Science, Shonan Institute of Technology, 1-1-25 Tsujido-Nishi-Kaigan, Fujisawa, Kanagawa, 251-8511, Japan.

Abel JJ, Rowntree LG and Turner BB (Baltimore Trio) proposed the concept of vividiffusion and developed a vividiffusion apparatus in 1912. In a 1914 paper, they laid out the most important rule of device design. We named this rule an ART law taken from the initials of the Baltimore Trio.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!