Detailed cytoarchitectonic studies of the human cerebral cortex appeared during the first quarter of the 20th century. The incorporation of the cytoarchitectonic map by Brodmann (1909) in the Talairach proportional stereotaxic space (Talairach and Tournoux, 1988) has established the Brodmann numerical nomenclature as the basis for describing the cortical location of structural and functional findings obtained with modern neuroimaging. In experimental anatomical and physiological investigations of the macaque monkey performed during the last 50 years, the numerical architectonic nomenclature used to describe findings in the prefrontal cortex has been largely based on the map by Walker (1940). Unfortunately, the map by Walker was not based on a comparative investigation of the cytoarchitecture of the human and macaque monkey prefrontal cortex and, as a result, the nomenclature and the criteria for demarcating areas in the two primate species are not always consistent. These discrepancies are a major obstacle in the ability to compare experimental findings from nonhuman primates with results obtained in functional and structural neuroimaging of the human brain. The present article outlines these discrepancies in the classical maps and describes comparative investigations of the cytoarchitecture of the prefrontal cortex of the macaque monkey and human (Petrides and Pandya, 1994, 1999, 2002a) in order to resolve these discrepancies and enable easy translation of experimental research in the monkey to findings in the human brain obtained with modern neuroimaging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cortex.2011.07.002DOI Listing

Publication Analysis

Top Keywords

prefrontal cortex
16
macaque monkey
16
human macaque
8
modern neuroimaging
8
map walker
8
human brain
8
human
6
monkey
5
prefrontal
4
cortex comparative
4

Similar Publications

MicroRNA-204-5p Deficiency within the vmPFC Region Contributes to Neuroinflammation and Behavioral Disorders via the JAK2/STAT3 Signaling Pathway in Rats.

Adv Sci (Weinh)

January 2025

Key Laboratory of Mental Disorders, The Second Hospital of Shandong University, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China.

Major depressive disorder (MDD) is usually considered associate with immune inflammation and synaptic injury within specific brain regions. However, the molecular mechanisms underlying the neural deterioration resulting in depression remain unclear. Here, it is found that miR-204-5p is markedly downregulated in the ventromedial prefrontal cortex (vmPFC) in a chronic unpredictable mild stress (CUMS) induce rat model of depression.

View Article and Find Full Text PDF

Cpeb1 remodels cell type-specific translational program to promote fear extinction.

Sci Adv

January 2025

Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.

Protein translation is crucial for fear extinction, a process vital for adaptive behavior and mental health, yet the underlying cell-specific mechanisms remain elusive. Using a Tet-On 3G genetic approach, we achieved precise temporal control over protein translation in the infralimbic medial prefrontal cortex () during fear extinction. In addition, our results reveal that the disruption of cytoplasmic polyadenylation element binding protein 1 (Cpeb1) leads to notable alterations in cell type-specific translational programs, thereby affecting fear extinction.

View Article and Find Full Text PDF

Adults are capable of either differentiating or integrating similar events in memory based on which representations are optimal for a given situation. Yet how children represent related memories remains unknown. Here, children (7-10 years old) and adults formed memories for separate yet overlapping events.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is characterized by deficits in social behavior and executive function (EF), particularly in cognitive flexibility. Whether transcranial magnetic stimulation (TMS) can improve cognitive outcomes in patients with ASD remains an open question. We examined the acute effects of prefrontal TMS on cortical excitability and fluid cognition in individuals with ASD who underwent TMS for refractory major depression.

View Article and Find Full Text PDF

Importance: Sleep disorders and mild cognitive impairment (MCI) commonly coexist in older adults, increasing their risk of developing dementia. Long-term tai chi chuan has been proven to improve sleep quality in older adults. However, their adherence to extended training regimens can be challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!