The fat body of Lithobates catesbeianus (formerly Rana catesbeiana) tadpoles was studied during metamorphosis and after food deprivation in order to detect changes in its weight, adipocyte size, histology, and melatonin content. Bullfrog tadpoles have large fat bodies throughout their long larval life. Fat bodies increase in absolute weight, and weight relative to body mass, during late stages of prometamorphosis, peaking just before climax, and then decreasing, especially during the latter stages of transformation into the froglet. The climax decrease is accompanied by a reduction in size of adipocytes and a change in histology of the fat body such that interstitial tissue becomes more prominent. Food deprivation for a month during early prometamorphosis significantly decreased fat body weight and adipocyte size but did not affect the rate of development. However, food restriction just before climax retarded development, suggesting that the increased nutrient storage in the fat body before climax is necessary for metamorphic progress. Melatonin, which might be involved in the regulation of seasonal changes in fat stores, stayed approximately at the same level during most of larval life, but increased sharply in the fat body during the late stages of climax. The findings show that the rate of development of these tadpoles is not affected by starvation during larval life as long as they can utilize fat body stores for nourishment. They also suggest that the build up of fat body stores just before climax is necessary for progress during the climax period when feeding stops.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpa.2011.08.010DOI Listing

Publication Analysis

Top Keywords

fat body
32
food deprivation
12
larval life
12
fat
11
lithobates catesbeianus
8
histology melatonin
8
melatonin content
8
body
8
weight adipocyte
8
adipocyte size
8

Similar Publications

The literature has documented conflicting and inconsistent associations between muscle-to-fat ratios and metabolic diseases. Additionally, different adipose tissues can have contrasting effects, with visceral adipose tissue being identified as particularly harmful. This study aimed to explore the relationship between the ratio of the lean mass index (LMI) to the visceral fat mass index (VFMI) and cardiometabolic disorders, including dyslipidemia, hypertension, and diabetes, as previous research on this topic is lacking.

View Article and Find Full Text PDF

Body composition is a determining factor in the physical performance of cyclists, directly influencing efficiency and power during competitions. Understanding these aspects can help optimize training and maximize results. This study aimed to analyze the influence of body composition on physical performance in mountain bike athletes.

View Article and Find Full Text PDF

Tumor Metabolism as a Factor Affecting Diversity in Cancer Cachexia.

Am J Physiol Cell Physiol

January 2025

Departments of Surgery and Oncology, University of Calgary Arnie Charbonneau Cancer Institute, University of Calgary.

Cancer cachexia is a multifaceted metabolic syndrome characterized by muscle wasting, fat redistribution, and metabolic dysregulation, commonly associated with advanced cancer but sometimes also evident in early-stage disease. More subtle body composition changes have also been reported in association with cancer, including sarcopenia, myosteatosis, and increased fat radiodensity. Emerging evidence reveals that body composition changes including sarcopenia, myosteatosis, and increased fat radiodensity, arise from distinct biological mechanisms and significantly impact survival outcomes.

View Article and Find Full Text PDF

To investigate cardiorespiratory fitness (CRF), body composition, health behaviors, and health-related quality of life (HRQoL) in adolescent and young adult cancer survivors (AYA-CS) compared with age-matched counterparts without a cancer diagnosis. This cross-sectional study recruited participants aged 15-25 years at the time of their cancer diagnosis and ≥ 5 years post-treatment. Participants completed cardiopulmonary exercise testing, dual-energy X-ray absorptiometry, food diaries, physical activity (PA), fatigue, and HRQoL questionnaires.

View Article and Find Full Text PDF

The effect of maternal risk factors during pregnancy on children's motor development at 5-6 years.

Clin Nutr ESPEN

January 2025

Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, 20520 Turku, Finland; Nutrition and Food Research Center, University of Turku, 20014 Turku, Finland.

Background And Aims: Maternal diet and health may influence a child's later neurodevelopment. We investigated the effect of maternal diet, adiposity, gestational diabetes mellitus (GDM), and depressive/anxiety symptoms during pregnancy on the child's motor outcome at 5-6 years.

Methods: The motor performance of 159 children of women with overweight or obesity (pre-pregnancy body mass index 25-29.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!