Current methods for detection of avian influenza virus (AIV) based on virus culture and RT-PCR are well established, but they are either time consuming or require specialized laboratory facilities and highly trained technicians. A simple, rapid, robust, and reliable test, suitable for use in the field or at the patient's bedside, is urgently needed. In this study, the performance of a newly developed portable impedance biosensor was evaluated by comparison with real-time reverse transcriptase PCR (rRT-PCR) and virus culture for detection of AIV in tracheal and cloacal swab samples collected from experimentally H5N2 AIV infected chickens. The impedance biosensor system was based on a combination of magnetic nanobeads, which were coated with AIV subtype-specific antibody for capture (separation and concentration) of a target virus, and a microfluidic chip with an interdigitated array microelectrode for transfer and detection of target virus, and impedance measurement of the bio-nanobeads and AI virus complexes in a buffer solution. A comparison of results obtained from 59 swab samples using virus culture, impedance biosensor and rRT-PCR methods showed that the impedance biosensor technique was comparable in sensitivity and specificity to rRT-PCR. Detection time for the impedance biosensor is less than 1h.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jviromet.2011.08.011DOI Listing

Publication Analysis

Top Keywords

impedance biosensor
24
virus culture
12
portable impedance
8
detection avian
8
avian influenza
8
virus
8
influenza virus
8
swab samples
8
target virus
8
impedance
7

Similar Publications

A label-free, flexible, and disposable aptasensor was designed for the rapid on-site detection of vancomycin (VAN) levels. The electrochemical sensor was based on lab-printed carbon electrodes (C-PE) enriched with cauliflower-shaped gold nanostructures (AuNSs), on which VAN-specific aptamers were immobilized as biorecognition elements and short-chain thiols as blocking agents. The AuNSs, characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), enhanced the electrochemical properties of the platform and the aptamer immobilization active sites.

View Article and Find Full Text PDF

We report a low-cost, portable biosensor composed of an aptamer-functionalized nanoporous anodic aluminum oxide (NAAO) membrane and a commercial microcontroller chip-based impedance reader suitable for electrochemical impedance spectroscopy (EIS)-based sensing. The biosensor consists of two chambers separated by an aptamer-functionalized NAAO membrane, and the impedance reader is utilized to monitor transmembrane impedance changes. The biosensor is utilized to detect amodiaquine molecules using an amodiaquine-binding aptamer (OR7)-functionalized membrane.

View Article and Find Full Text PDF

Plastic pollution, particularly from microplastics (MPs) and nanoplastics (NPs), has become a critical environmental and health concern due to their widespread distribution, persistence, and potential toxicity. MPs and NPs originate from primary sources, such as cosmetic microspheres or synthetic fibers, and secondary fragmentation of larger plastics through environmental degradation. These particles, typically less than 5 mm, are found globally, from deep seabeds to human tissues, and are known to adsorb and release harmful pollutants, exacerbating ecological and health risks.

View Article and Find Full Text PDF

Carboxylated Graphene: An Innovative Approach to Enhanced IgA-SARS-CoV-2 Electrochemical Biosensing.

Biosensors (Basel)

January 2025

LABEL-Laboratório de Bioeletrônica e Eletroanalítica, Central Analítica Multidisciplinar, Universidade Federal do Amazonas, Manaus 69067-005, Amazonas, Brazil.

Biosensors harness biological materials as receptors linked to transducers, enabling the capture and transformation of primary biorecognition signals into measurable outputs. This study presents a novel carboxylation method for synthesizing carboxylated graphene (CG) under acidic conditions, enhancing biosensing capabilities. The characterization of the CG was performed using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Raman spectroscopy, thermogravimetric analysis (TGA), and X-ray diffraction (XRD).

View Article and Find Full Text PDF

Point of Care (POC) diagnosis provides an effective approach for controlling and managing Neglected Tropical Diseases (NTDs). Electrochemical biosensors are well-suited for molecular diagnostics due to their high sensitivity, cost-effectiveness, and ease of integration into POC devices. Schistosomiasis is a prominent NTD highly prevalent in Africa, Asia, and Latin America, with significant socioeconomic implications such as discrimination, reduced work capacity, or mortality, perpetuating the cycle of poverty in affected regions worldwide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!