Semiconductor nanocrystal quantum dots (QDs) possess an enormous potential of applications in nanomedicine, drug delivery and bioimaging which derives from their unique photoemission and photostability characteristics. In spite of this, however, their interactions with biological systems and impact on human health are still largely unknown. Here we used neurosecretory mouse chromaffin cells of the adrenal gland for testing the effects of CdSe-ZnS core-shell quantum dots (5-36 nM) on Ca(2+) channels functionality and Ca(2+)-dependent neurosecretion. Prolonged exposure (24 h) to commonly used concentrations of CdSe-ZnS QDs (≥16 nM) showed that the semiconductor nanocrystal is effectively internalized into the cells without affecting cell integrity (no changes of membrane resistance and cell capacitance). QDs reduced the size of Ca(2+) currents by ∼28% in a voltage-independent manner without affecting channel gating. Correspondingly, depolarization-evoked exocytosis, measured at +10 mV, where Ca(2+) currents are maximal, was reduced by 29%. CdSe-ZnS QDs reduced the size of the readily releasable pool (RRP) of secretory vesicles by 32%, the frequency of release by 33% and the overall quantity of released catecholamines by 61%, as measured by carbon fibers amperometry. In addition, the Ca(2+)-dependence of exocytosis was reduced, whereas the catecholamine content of single granules, as well as the kinetics of release, remained unaltered. These data suggest that exposure to CdSe-ZnS QDs impairs Ca(2+) influx and severely interferes with the functionality of the exocytotic machinery, compromising the overall catecholamine supply from chromaffin cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2011.08.031DOI Listing

Publication Analysis

Top Keywords

quantum dots
12
chromaffin cells
12
cdse-zns qds
12
mouse chromaffin
8
semiconductor nanocrystal
8
qds reduced
8
reduced size
8
ca2+ currents
8
cdse-zns
5
qds
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!