This study reports on detection of a large number of biological and anthropogenic pollutants using LC-MS/MS and GC-MS technologies in settled floor dust (SFD). The latter technique was applied to obtain a general picture on the presence of microbial as well as non-microbial volatile organic compounds, whereas the targeted LC-MS/MS analysis focused on identification of species specific secondary metabolites. In the absence of moisture monitoring data the relevance of finding of stachybotrylactam and other metabolites of tertiary colonizers are confined only to accidental direct exposure to SFD. To the best of our knowledge 30 of the 71 identified volatile organic compounds (VOCs) are newly reported in SFD matrix. Coordinated application of "AMDIS and Spectconnect" was found beneficial for the evaluation and identification of prime volatile pollutants in complex environmental samples. Principal component analysis (PCA) of peak areas of 18 microbial volatile organic compounds (MVOCs) resulted in identification of nonanal as potential MVOC marker. Two more volatiles toluene and 1-tetradecanol though had discriminative influence, are not regarded as MVOC markers, considering their probable alternate origin from paints and cosmetics, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2011.07.043DOI Listing

Publication Analysis

Top Keywords

volatile organic
12
organic compounds
12
settled floor
8
floor dust
8
presence microbial
8
lc-ms/ms gc-ms
8
volatile
5
evaluation settled
4
dust presence
4
microbial metabolites
4

Similar Publications

Ion mobility spectrometry and ion mobility-mass spectrometry in clinical chemistry.

Adv Clin Chem

January 2025

Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, United States. Electronic address:

Advancements in clinical chemistry have major implications in terms of public health, prompting many clinicians to seek out chemical information to aid in diagnoses and treatments. While mass spectrometry (MS) and hyphenated-MS techniques such as LC-MS or tandem MS/MS have long been the analytical methods of choice for many clinical applications, these methods routinely demonstrate difficulty in differentiating between isomeric forms in complex matrices. Consequently, ion mobility spectrometry (IM), which differentiates molecules on the basis of size, shape, and charge, has demonstrated unique advantages in the broad application of stand-alone IM and hyphenated IM instruments towards clinical challenges.

View Article and Find Full Text PDF

Necrotizing enterocolitis (NEC) is a devastating disease of the neonatal gastrointestinal tract. Volatile organic compounds (VOCs), odoriferous compounds released as a byproduct of bacterial metabolism, can be used as a proxy for gut health. We hypothesized that patients with NEC would have different microbial profiles and elicit different VOC signatures as assessed by gas chromatography/mass spectrometry (GC/MS) or an electronic nose compared to controls.

View Article and Find Full Text PDF

The precise identification of various toxic gases is important to prevent health and environmental hazards using cost-effective, efficient, metal oxide-based chemiresistive sensing methods. This study explores the sensing properties of a chemiresistive sensor based on a ZnSnO-SnO microcomposite for detecting -butanol vapours. The microcomposite, enriched with oxygen vacancies, was thoroughly characterized, confirming its structure, crystallinity, morphology and elemental composition.

View Article and Find Full Text PDF

Wildfires at the wildland-urban interface (WUI) have been increasing in frequency over recent decades due to increased human development and shifting climatic patterns. The work presented here focuses on the impacts of a WUI fire on indoor air using field measurements of volatile organic compounds (VOCs) by Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-TOF-MS). We found a slow decrease in VOC mixing ratios over the course of roughly 5 weeks starting 10 days after the fire, and those levels decreased to ∼20% of the initial indoor value on average.

View Article and Find Full Text PDF

While photochemical aging is known to alter secondary organic aerosol (SOA) properties, this process remains poorly constrained for anthropogenic SOA. This study investigates the photodegradation of SOA produced from the hydroxyl radical-initiated oxidation of naphthalene under low- and high-NO conditions. We used state-of-the-art mass spectrometry (MS) techniques, including extractive electrospray ionization and chemical ionization MS, for the in-depth molecular characterization of gas and particulate phases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!