A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The F box protein partner of paired regulates stability of Drosophila centromeric histone H3, CenH3(CID). | LitMetric

Centromere identity and function is determined by the specific localization of CenH3 (reviewed in [1-7]). Several mechanisms regulate centromeric CenH3 localization, including proteasome-mediated degradation that, both in budding yeast and Drosophila, regulates CenH3 levels and prevents promiscuous misincorporation throughout chromatin [8, 9]. CenH3(CENP-A) proteolysis has also been reported in senescent human cells [10] or upon infection with herpes simplex virus 1 [11]. Little is known, however, about the actual mechanisms that regulate CenH3 proteolysis. Recent work in budding yeast identified Psh1 as an E3-ubiquitin ligase that mediates degradation of CenH3(Cse4p) [12, 13], but E3-ligases regulating CenH3 stability in metazoans are unknown. Here, we report that the F box protein partner of paired (Ppa), which is a variable subunit of the main E3-ligase SCF [14-17], mediates CenH3(CID) stability in Drosophila. Our results show that Ppa depletion results in increased CenH3(CID) levels. Ppa physically interacts with CenH3(CID) through the CATD(CID) that, in the fly, mediates Ppa-dependent CenH3(CID) stability. Altogether, these results strongly suggest that, in Drosophila, SCF(Ppa) regulates CenH3(CID) proteolysis. Interestingly, most known SCF complexes are inactive when, at mitosis, de novo CenH3(CID) deposition takes place at centromeres, suggesting that, in Drosophila, CenH3(CID) deposition and proteolysis are synchronized events.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2011.07.041DOI Listing

Publication Analysis

Top Keywords

box protein
8
protein partner
8
partner paired
8
stability drosophila
8
cenh3cid
8
mechanisms regulate
8
budding yeast
8
cenh3cid stability
8
cenh3cid deposition
8
drosophila
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!