Increased numbers of orexin/hypocretin neurons in a genetic rat depression model.

Neuropeptides

Translational Neuroendocrine Research Unit, BMC D11, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden.

Published: December 2011

The Flinders Sensitive Line (FSL) rat is a genetic animal model of depression that displays characteristics similar to those of depressed patients including lower body weight, decreased appetite and reduced REM sleep latency. Hypothalamic neuropeptides such as orexin/hypocretin, melanin-concentrating hormone (MCH) and cocaine and amphetamine regulated transcript (CART), that are involved in the regulation of both energy metabolism and sleep, have recently been implicated also in depression. We therefore hypothesized that alterations in these neuropeptide systems may play a role in the development of the FSL phenotype with both depressive like behavior, metabolic abnormalities and sleep disturbances. In this study, we first confirmed that the FSL rats displayed increased immobility in the Porsolt forced swim test compared to their control strain, the Flinders Resistant Line (FRL), which is indicative of depressive-like behavior. We then examined the number of orexin-, MCH- and CART-immunopositive neurons in the hypothalamus using stereological analyses. We found that the total number of orexin-positive neurons was higher in the hypothalamus of female FSL rats compared to female FRL rats, whereas no changes in the MCH or CART populations could be detected between the strains. Chronic treatment with the selective serotonin reuptake inhibitor (SSRI) escitalopram reduced immobility only in the FRL rats where it also increased the number of MCH positive neurons compared to untreated rats. These findings support the view that orexin may be involved in depression and strengthen the notion that the "depressed" brain responds differently to pharmacological interventions than the normal brain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.npep.2011.07.010DOI Listing

Publication Analysis

Top Keywords

fsl rats
8
frl rats
8
rats
5
increased numbers
4
numbers orexin/hypocretin
4
neurons
4
orexin/hypocretin neurons
4
neurons genetic
4
genetic rat
4
depression
4

Similar Publications

An Updated Bio-Behavioral Profile of the Flinders Sensitive Line Rat: Reviewing the Findings of the Past Decade.

Pharmacol Res Perspect

February 2025

Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa.

The Flinders sensitive line (FSL) rat is an accepted rodent model for depression that presents with strong face, construct, and predictive validity, thereby making it suitable to investigate novel antidepressant mechanisms. Despite the translatability of this model, available literature on this model has not been reviewed for more than ten years. The PubMed, ScienceDirect and Web of Science databases were searched for relevant articles between 2013 and 2024, with keywords relating to the Flinders line rat, and all findings relevant to treatment naïve animals, included.

View Article and Find Full Text PDF

Modulation of the endocannabinoid system by (S)-ketamine in an animal model of depression.

Pharmacol Res

January 2025

Department of Biomedicine, Aarhus University, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Denmark. Electronic address:

Ketamine (KET) is recognized as rapid-acting antidepressant, but its mechanisms of action remain elusive. Considering the role of endocannabinoids (eCB) in stress and depression, we investigated if S-KET antidepressant effects involve the regulation of the eCB system using an established rat model of depression based on selective breeding: the Flinders Sensitive Line (FSL) and their controls, the Flinders Resistant Line (FRL). S-KET (15 mg/kg) effects were assessed in rats exposed to the open field and forced swimming test (FST), followed by analysis of the eCB signaling in the rat prefrontal cortex (PFC), a brain region involved in depression neurobiology.

View Article and Find Full Text PDF

Passively administered fluoxetine reaches the juvenile brain of FSL rats and reduces antioxidant defences, without altering serotonin turnover.

BMC Pharmacol Toxicol

August 2024

Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Hoffman Street, Potchefstroom, 2531, South Africa.

Background: Fluoxetine is present in breast milk, yet it is unclear to what extent it, or its active metabolite, norfluoxetine, reaches the brain of the infant and what the effects of such exposure on neurobiological processes are. We therefore aimed to quantify the concentration of passively administered fluoxetine and norfluoxetine in the whole brains of exposed Flinders sensitive line (FSL) offspring and establish their influence on serotonergic function and redox status.

Methods: Adult FSL dams received fluoxetine (10 mg/kg/day), or placebo for fourteen days, beginning on postpartum day 04.

View Article and Find Full Text PDF

Unraveling the Impact of miR-146a in Pulmonary Arterial Hypertension Pathophysiology and Right Ventricular Function.

Int J Mol Sci

July 2024

Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal.

Pulmonary arterial hypertension (PAH) is a chronic disorder characterized by excessive pulmonary vascular remodeling, leading to elevated pulmonary vascular resistance and right ventricle (RV) overload and failure. MicroRNA-146a (miR-146a) promotes vascular smooth muscle cell proliferation and vascular neointimal hyperplasia, both hallmarks of PAH. This study aimed to investigate the effects of miR-146a through pharmacological or genetic inhibition on experimental PAH and RV pressure overload animal models.

View Article and Find Full Text PDF

A concept for human use of real-time and remote monitoring of diabetic subjects using intermittent scanned continuous glucose measurement.

Biomed Eng Online

February 2024

Grupo GITA, Facultad de Minas, Universidad Nacional de Colombia, Carrera 80#65-223, 050001, Medellín, Colombia.

Article Synopsis
  • Flash glucose monitoring systems like the FreeStyle Libre (FSL) are popular for tracking glucose levels in diabetes, and a new modified system (c-rtCGM) allows for remote monitoring and trend analysis.
  • This study aimed to compare the accuracy and agreement of the FSL sensor with the c-rtCGM by analyzing data from diabetic rats and assessing their connectivity every 5 minutes.
  • Results showed that the c-rtCGM had a Median absolute relative difference (Median ARD) of 6.58% compared to the FSL, improving to 2.41% with more frequent calibration, while also demonstrating 95% connectivity for data reception.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!