Four interconverting flavanone glycosides [(2R)- and (2S)-3',4',5,6-tetrahydroxyflavanone 7-O-β-D-glucopyranoside, and (2R)- and (2S)-3',4',5,8-tetrahydroxyflavanone 7-O-β-D-glucopyranoside], in addition to eight known flavonoids [naringenin, asebogenin, sakuranetin, 6-hydroxyluteolin 7-O-β-D-glucoside, (2R)- and (2S)-eriodictyol 7-O-β-D-glucopyranoside, aromadendrin and phloretin], three phenylpropanoid glycosides [forsythoside B, alyssonoside and verbascoside] and the epoxylignan lariciresinol 4'-O-β-D-glucopyranoside were isolated and identified in the EtOH extract of the aerial parts of Lippia salviaefolia Cham. The phytochemical study herein was guided by preliminary antioxidant tests, namely, β-carotene protection and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity. The crude extracts, their active fractions and the isolated compounds were assayed against intracellular reactive oxygen species (ROS) and human embryonic kidney HEK-293 and human melanoma M14 cancer cell growth. Aromadendrin and phloretin were able to counteract elevation of ROS induced by the oxidant t-butylhydroperoxide (t-BOOH) in HEK-293 cells, whereas phloretin strongly protected HEK-293 cells from ROS damage at 1 μM. Additionally, phloretin exhibited a significant growth inhibitory effect at 20-40 μM in both HEK-293 and M14 cells and induced a concentration dependent apoptosis at 20 μM in M14 cells, suggesting a selective action towards malignant cells. Due to their equilibria, the four interconverting flavanone glycosides were studied using 1D and 2D NMR, HPLC-CD-PDA and HRMS analyses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phytochem.2011.07.004DOI Listing

Publication Analysis

Top Keywords

interconverting flavanone
12
lippia salviaefolia
8
salviaefolia cham
8
flavanone glycosides
8
hek-293 cells
8
m14 cells
8
cells
5
flavanone glucosides
4
glucosides phenolic
4
phenolic compounds
4

Similar Publications

Dual effects of cardamonin/alpinetin and their acrolein adducts on scavenging acrolein and the anti-bacterial activity from Hayata as a spice in roasted meat.

Food Funct

July 2022

Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, Jiangsu 210023, People's Republic of China.

Acrolein (ACR) is frequently produced by the thermal degradation of carbohydrates and amino acids and lipid peroxidation in the thermal processing of food. Long-term exposure to ACR can cause various chronic diseases. Here, we screened two high-temperature-resistant ACR inhibitors, cardamonin (CAR) and alpinetin (ALP), which can interconvert without any loss at 100 °C, and were obtained from Hayata (AKH).

View Article and Find Full Text PDF

Oxidative stress and inflammation in kidney are the main causes for hyperuricemic nephropathy (HN). Baicalin and baicalein, two flavonoids, have anti-inflammatory and anti-oxidative effects and they are interconvertible in the body. In this study, both baicalin and baicalein were administered by intragastric administration (i.

View Article and Find Full Text PDF

The methanol extract of the flowers of the Australian eucalypt tree Corymbia torelliana yielded six new β-triketone-flavanone hybrids, torellianones A-F (1-6), the tetrahydroxycyclohexane torellianol A (7), and known β-triketones (4 S)-ficifolidione (8) and (4 R)-ficifolidione (9), and β-triketone-flavanones kunzeanone A (10) and kunzeanone B (11). Torellianones A and B, C and D, and E and F were each isolated as inseparable diastereomeric mixtures. Exchange correlations observed in a ROESY spectrum indicated that 5 and 6 also interconverted between stable conformers.

View Article and Find Full Text PDF

Flavonoids are a large group of plant secondary metabolites that exert various biological and pharmacological effects. In this context, the generation of derivatives is of considerable interest. The introduction of hydroxy groups is of particular relevance, as they are known to be involved in many of the biological interactions and furthermore enable additional modifications, such as glycosylations.

View Article and Find Full Text PDF

A novel local recycling mechanism that enhances enteric bioavailability of flavonoids and prolongs their residence time in the gut.

Mol Pharm

November 2012

Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, 1838 N Guangzhou Avenue, Guangzhou, Guangdong 510515, China.

Recycling in the gastrointestinal tract is important for endogenous substances such as bile acids and for xenobiotics such as flavonoids. Although both enterohepatic and enteric recycling mechanisms are well recognized, no one has discussed the third recycling mechanism for glucuronides: local recycling. The intestinal absorption and metabolism of wogonin and wogonoside (wogonin-7-glucuronide) was characterized by using a four-site perfused rat intestinal model, and hydrolysis of wogonoside was measured in various enzyme preparations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!