We have studied the phase and structure evolution of the Ti33Cu67 amorphous alloy subjected to electrical pulses of high current density. By varying the pulse parameters, different stages of crystallization could be observed in the samples. Partial polymorphic nanocrystallization resulting in the formation of 5- to 8-nm crystallites of the TiCu2 intermetallic in the residual amorphous matrix occurred when the maximum current density reached 9.7·108 A m-2 and the pulse duration was 140 μs, though the calculated temperature increase due to Joule heating was not enough to reach the crystallization temperature of the alloy. Samples subjected to higher current densities and higher values of the evolved Joule heat per unit mass fully crystallized and contained the Ti2Cu3 and TiCu3 phases. A common feature of the crystallized ribbons was their non-uniform microstructure with regions that experienced local melting and rapid solidification.PACS: 81; 81.05.Bx; 81.05.Kf.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3212051PMC
http://dx.doi.org/10.1186/1556-276X-6-512DOI Listing

Publication Analysis

Top Keywords

electrical pulses
8
current density
8
crystallization ti33cu67
4
ti33cu67 metallic
4
metallic glass
4
glass high-current
4
high-current density
4
density electrical
4
pulses studied
4
studied phase
4

Similar Publications

Can ICD Electrograms Help Ventricular Tachycardia Ablation?: Results From the Multicenter Randomized AIDEG-VTA Trial.

J Am Coll Cardiol

November 2024

Electrophysiology Laboratory and Arrhythmia Unit, Centro Integral de Enfermedades Cardiovasculares, Hospital Monteprincipe, Grupo HM Hospitales, Madrid, Spain. Electronic address:

Background: The results of ablation of sustained monomorphic ventricular tachycardia (SMVT) are suboptimal. For many patients with implantable cardioverter-defibrillators (ICDs), ICD electrograms (ICD-EGs) provide the only available information on SMVT. ICD-EGs have the ability to distinguish morphologically distinct SMVT and can be used for pace mapping.

View Article and Find Full Text PDF

Background: Stimulating diuresis is crucial in heart failure (HF) treatment. Diuretic resistance develops in approximately 30% to 45% of patients with HF.

Objective: We investigated the feasibility and safety of lateral epidural stimulation (LES) to enhance diuresis by stimulating renal afferent sensory nerves.

View Article and Find Full Text PDF

Design and Study of Pulsed Eddy Current Sensor for Detecting Surface Defects in Small-Diameter Bars.

Sensors (Basel)

December 2024

College of Automation & College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.

The design and study of pulsed eddy current sensors for detecting surface defects in small-diameter rods are highly significant. Accurate detection and identification of surface defects in small-diameter rods may be attained by the ongoing optimization of sensor design and enhancement of detection technologies. This article presents the construction of a non-coaxial differential eddy current sensor (Tx-Rx sensor) and examines the detection of surface defects in a small diameter bar.

View Article and Find Full Text PDF

Remote photo-plethysmography (rPPG) is a useful camera-based health motioning method that can measure the heart rhythm from facial videos. Many well-established deep learning models can provide highly accurate and robust results in measuring heart rate (HR) and heart rate variability (HRV). However, these methods are unable to effectively eliminate illumination variation and motion artifact disturbances, and their substantial computational resource requirements significantly limit their applicability in real-world scenarios.

View Article and Find Full Text PDF

A highly sensitive sulfur dioxide (SO) photoacoustic gas sensor was developed for the sulfur hexafluoride (SF) decomposition detection in electric power systems by using a novel 266 nm low-cost high-power solid-state pulse laser and a high -factor differential photoacoustic cell. The ultraviolet (UV) pulse laser is based on a passive -switching technology with a high output power of 28 mW. The photoacoustic signal was normalized to the laser power to solve the fluctuation of the photoacoustic signal due to the power instability of the UV laser.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!