A fabrication process for the monolithic integration of field-effect transistors based on individual carbon nanotubes and load resistors based on vacuum-evaporated carbon films into fast unipolar logic circuits on glass substrates is reported for the first time. The individual-carbon-nanotube transistors operate with relatively small gate-source and drain-source voltages of 1 V and combine large transconductance (up to 6 μS), large ON/OFF ratio (>10(4)), and short switching delay time constants (12 ns). The thin-film carbon load resistors provide linear current-voltage characteristics and resistances between 300 kΩ and 100 MΩ, depending on the layout of the resistors and the thickness of the vacuum-evaporated carbon films. Various combinational circuits (NAND, NOR, AND, OR gates) as well as a sequential circuit ( ̅S ̅R NAND latch) have been fabricated and characterized. Although these unipolar circuits cannot compete with optimized complementary circuits in terms of integration density and static power consumption, they offer the possibility of realizing air-stable, low-voltage integrated circuits with promising static and dynamic performance on unconventional substrates for large-area electronics applications, such as displays or sensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn202486v | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!