Coagulation/flocculation (CF) by use of alum and cationic polymer polyDADMAC, was performed as a pretreatment for remediation of oil sands process-affected water (OSPW). Various factors were investigated and the process was optimized to improve efficiency of removal of organic carbon and turbidity. Destabilization of the particles occurred through charge neutralization by adsorption of hydroxide precipitates. Scanning electron microscope images revealed that the resultant flocs were compact. The CF process significantly reduced concentrations of naphthenic acids (NAs) and oxidized NAs by 37 and 86%, respectively, demonstrating the applicability of CF pretreatment to remove a persistent and toxic organic fraction from OSPW. Concentrations of vanadium and barium were decreased by 67-78% and 42-63%, respectively. Analysis of surface functional groups on flocs also confirmed the removal of the NAs compounds. Flocculation with cationic polymer compared to alum, caused toxicity toward the benthic invertebrate, Chironoums dilutus, thus application of the polymer should be limited.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es201498vDOI Listing

Publication Analysis

Top Keywords

removal organic
8
oil sands
8
sands process-affected
8
process-affected water
8
cationic polymer
8
impact metallic
4
metallic coagulants
4
coagulants removal
4
organic compounds
4
compounds oil
4

Similar Publications

Azo dye adsorption on ZrO and natural organic material doped ZrO.

Sci Rep

January 2025

Department of Chemistry, Faculty of Science, Karabuk University, Karabuk, Turkey.

Natural wastes and inorganic adsorbents are used for the removal of diazo dye Congo red (CR), which causes water pollution and is a carcinogen, from wastewater. Organic waste olive pulp (ZK), inorganic ZrO (Zr) and three different weight percent ZK/Zr (organic/inorganic) binary adsorbent systems prepared by ball-milling method were investigated for the effective removal of CR from wastewater. Characterization of both single and binary adsorbent systems were carried out by ATR/FTIR and SEM.

View Article and Find Full Text PDF

Microbial community structure and water quality performance in local scrubber reclaim system for water reclamation of the semiconductor industry: a case study of a semiconductor plant in Beijing.

Environ Res

January 2025

Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control of the Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, PR China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, 215163, PR China.

The local scrubber reclaim (LSR) system plays a critical role in water reclamation and in reducing environmental pollution emissions in semiconductor factories. This study monitored the changes in water quality and assessed the key stages of pollutant removal, with a primary focus on evaluating microbial growth and the shifts in microbial community structure and function in the LSR system. The results showed that activated carbon filtration (ACF) effectively removed total organic carbon (TOC) with a removal rate of 59.

View Article and Find Full Text PDF

Assessment of temperature dynamics during methane oxidation in a pilot scale compost biofilter.

Bioresour Technol

January 2025

Instituto de Ingeniería, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, C.P. 04510 Ciudad de México, México. Electronic address:

Biological methane oxidation can sustain high temperatures in organic matrices, such as landfill covers and compost biofilters. This study investigates the temperature dynamics, methane removal efficiency, and microbial community responses in a pilot scale compost biofilter under three methane concentrations (2, 4, and 8 % v v in air) with a 23-minute empty bed residence time. Complete methane removal was achieved at 2 %, with compost bed temperatures reaching 51 °C.

View Article and Find Full Text PDF

Dyes can seriously harm human health because they linger or break down in the environment and find their way into drinking water through the water cycle. Examples of the most important interactions between MOFs and dyes are provided, and an effort is made to comprehend how surface charge and size compatibility affect the adsorption process. The methods for incorporating functionalized Ce-MOF into electrospun nanofibers made of polyvinyl alcohol and chitosan to create functionalized cerium metal organic framework nanofiber membranes (FCCP nanofiber membranes) are presented in this paper.

View Article and Find Full Text PDF

Ultrasonic cavitation treatment of o-cresol wastewater and long-term pilot-scale study.

J Environ Manage

January 2025

School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China. Electronic address:

Acoustic cavitation is a cutting-edge and eco-friendly advanced oxidation technology with significant efficacy in removing organic pollutants from water. Despite its potential, research on the degradation of o-cresol, a common and challenging phenolic pollutant, is limited. This study systematically investigates the optimal conditions for degrading o-cresol via acoustic cavitation and evaluates its application potential through extensive pilot tests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!