Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Oxidative stress plays an important role in cardio-vascular diseases and atherosclerosis. Fibrinogen (FB), plasma coagulation protein, is a risk factor of atherosclerosis. Importantly, it can be readily oxidized during oxidative stress and in pathological conditions. FB can promote angiogenesis by supporting migration and proliferation of endothelial cells. On the other hand, recent reports demonstrated cytotoxicity of oxidized fibrinogen (oxFB). Endothelial dysfunction plays a critical role in the atherosclerosis development, therefore it is important to understand the effect of oxFB on human endothelial cells (hEC), and the mechanism of the cell death. Here, we studied influence of oxFB on hEC during 24 h incubation in two conditions: (1) at low serum level (0.1%) and in the absence of growth factors ("starvation"); (2) in full medium (5% FBS) with growth factor supplement. Apoptosis was evaluated using analysis of nuclear morphology, phosphatidylserine externalization on hEC surface and caspase-3 activation. In starvation, we observed significant cell death via apoptosis. FB prevented starvation-induced cell death and caspase activation. Caspase activity in the presence of oxFB was 1.5 times higher as compared to FB, yet oxFB demonstrated significant cell protection during stress. Similarly, in optimal cultivation conditions FB decreased the rate of apoptosis by three times, while oxFB supported cell viability to the lesser extent. Thus, FB can protect hEC in stress conditions (in starvation); oxidative modification of FB diminishes its antiapoptotic properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.18097/pbmc20115702210 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!