Noncovalent protein interaction with poly(ADP-ribose).

Methods Mol Biol

Department of Structural and Functional Biology, University Federico II of naples, Naples, Italy.

Published: January 2012

Compared to most common posttranslational modifications of proteins, a peculiarity of poly(ADP-ribosyl)ation is the molecular heterogeneity and complexity of the reaction product, poly(ADP-ribose) (PAR). In fact, protein-bound PAR consists of variously sized (2-200 ADP-ribose residues) linear or branched molecules, negatively charged at physiological pH. It is now clear that PAR not only affects the function of the polypeptide to which it is covalently bound, but it can also influence the activity of other proteins by engaging specific noncovalent interactions. In the last 10 years, the family of PAR-binding proteins has been rapidly growing and functional studies have expanded the regulatory potential of noncovalent -protein targeting by PAR far beyond initial assumptions.In this chapter, methods are described for: (1) PAR synthesis and analysis; (2) detecting PAR-binding proteins in protein mixtures; (3) defining affinity and specificity of PAR binding to individual proteins or protein fragments; and (4) identifying PAR molecules selectively involved in the interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-61779-270-0_5DOI Listing

Publication Analysis

Top Keywords

par-binding proteins
8
proteins protein
8
par
7
proteins
5
noncovalent protein
4
protein interaction
4
interaction polyadp-ribose
4
polyadp-ribose compared
4
compared common
4
common posttranslational
4

Similar Publications

XRCC1 mediates PARP1- and PAR-dependent recruitment of PARP2 to DNA damage sites.

Nucleic Acids Res

February 2025

Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032, United States.

Poly-ADP-ribose polymerases 1 and 2 (PARP1 and 2) are critical sensors of DNA-strand breaks and targets for cancer therapy. Upon DNA damage, PARP1 and 2 synthesize poly-ADP-ribose (PAR) chains on themselves and other substrates, facilitating DNA single-strand break repair by recruiting PAR-binding DNA repair factors, including X-ray repair cross-complementing group 1 (XRCC1) and aprataxin and polynucleotide kinase phosphatase-like factor (APLF). While diverse DNA lesions activate PARP1, PARP2 is selectively activated by 5' phosphorylated nicks.

View Article and Find Full Text PDF

PARPs and ADP-ribosylation-mediated biomolecular condensates: determinants, dynamics, and disease implications.

Trends Biochem Sci

March 2025

Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA. Electronic address:

Biomolecular condensates are cellular compartments that selectively enrich proteins and other macromolecules despite lacking enveloping membranes. These compartments often form through phase separation triggered by multivalent nucleic acids. Emerging data have revealed that poly(ADP-ribose) (PAR), a nucleic acid-based protein modification catalyzed by ADP-ribosyltransferases (commonly known as PARPs), plays a crucial role in this process.

View Article and Find Full Text PDF

CHD6 has poly(ADP-ribose)- and DNA-binding domains and regulates PARP1/2-trapping inhibitor sensitivity via abasic site repair.

Nat Commun

January 2025

Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.

To tolerate oxidative stress, cells enable DNA repair responses often sensitive to poly(ADP-ribose) (PAR) polymerase 1 and 2 (PARP1/2) inhibition-an intervention effective against cancers lacking BRCA1/2. Here, we demonstrate that mutating the CHD6 chromatin remodeler sensitizes cells to PARP1/2 inhibitors in a manner distinct from BRCA1, and that CHD6 recruitment to DNA damage requires cooperation between PAR- and DNA-binding domains essential for nucleosome sliding activity. CHD6 displays direct PAR-binding, interacts with PARP-1 and other PAR-associated proteins, and combined DNA- and PAR-binding loss eliminates CHD6 relocalization to DNA damage.

View Article and Find Full Text PDF

Non-covalent interactions of poly(ADP-ribose) (PAR) facilitate condensate formation, yet the impact of these interactions on condensate properties remains unclear. Here, we demonstrate that PAR-mediated interactions through PARP13, specifically the PARP13.2 isoform, are essential for modulating the dynamics of stress granules-a class of cytoplasmic condensates that form upon stress, including types frequently observed in cancers.

View Article and Find Full Text PDF

To overcome genotoxicity, cells have evolved powerful and effective mechanisms to detect and respond to DNA lesions. RecQ Like Helicase-4 (RECQL4) plays a vital role in DNA damage responses. RECQL4 is recruited to DNA double-strand break (DSB) sites in a poly(ADP-ribosyl)ation (PARylation)-dependent manner, but the mechanism and significance of this process remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!