Pea aphids, Acyrthosiphon pisum, suppress induced plant volatiles in broad bean, Vicia faba.

J Chem Ecol

Department of Entomology, Center for Chemical Ecology, The Pennsylvania State University, University Park, USA.

Published: October 2011

Plants defend themselves against herbivory through several means, including the production of airborne volatile organic compounds (VOCs). These VOCs benefit plants by attracting natural enemies of their herbivores. The pea aphid, Acyrthosiphon pisum, is able to feed on its host plant, Vicia faba, without inducing detectable changes in plant VOC emission. Levels of VOCs emission are not significantly different between control plants and those fed upon by aphids for up to 5 days. Using a second herbivore, the beet armyworm caterpillar, Spodoptera exigua, we demonstrate that several expected caterpillar-induced VOCs are reduced when co-infested with pea aphids, thus demonstrating that pea aphids have the ability to inhibit the release of certain VOCs. This study shows, for the first time, that aphids not only avoid triggering plant volatile emission, but also can actively inhibit herbivore-induced volatiles.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10886-011-0006-5DOI Listing

Publication Analysis

Top Keywords

pea aphids
12
acyrthosiphon pisum
8
vicia faba
8
vocs
5
pea
4
aphids acyrthosiphon
4
pisum suppress
4
suppress induced
4
plant
4
induced plant
4

Similar Publications

RNAi of Neuropeptide CCHamide-1 and Its Receptor Indicates Role in Feeding Behavior in the Pea Aphid, .

Insects

November 2024

Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China.

Neuropeptide (abbreviated as ) is a recently discovered peptide that is present in many arthropods and is the ligand of the , a member of the G protein-coupled receptors (GPCRs) superfamily, which plays a regulatory role in diverse physiological processes such as feeding, circadian rhythm, insulin production, lipid metabolism, growth, and reproduction. However, the function of this gene in aphids is still unknown. Here, we characterized and determined the potential role of / signaling in the pea aphid, , which is a notorious pest in agriculture.

View Article and Find Full Text PDF

Differential genome-wide expression profiles in response to high temperatures in the two body-color morphs of the pea aphid.

Int J Biol Macromol

December 2024

State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, National Demonstration Center for Experimental Grassland Science Education, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China. Electronic address:

Global warming and extremely high temperatures affect insect survival and distribution. In this study, we characterized the gene expression profiles of red (PAR) and green (PAG) morphs of the pea aphid (Acyrthosiphon pisum) at three high temperatures (30 °C, 36 °C, and 38 °C) and three treatment durations (6 h, 12 h, and 24 h) by high-throughput sequencing. Both PARs and PAGs increased the number of significantly differentially expressed genes as temperature and treatment duration increased, particularly for genes associated with stress resistance, lipid metabolism, cuticular protein expression, and the initiation of various regulatory mechanisms.

View Article and Find Full Text PDF

Successful plant growth requires plants to minimize harm from antagonists and maximize benefit from mutualists. However, these outcomes may be difficult to achieve simultaneously, since plant defenses activated in response to antagonists can compromise mutualism function, and plant resources allocated to defense may trade off with resources allocated to managing mutualists. Here, we investigate how antagonist attack affects plant ability to manage mutualists with sanctions, in which a plant rewards cooperative mutualists and/or punishes uncooperative mutualists.

View Article and Find Full Text PDF

Efficacy and Fate of RNA Interference Molecules in the Green Pea Aphid, Acyrthosiphon pisum.

Arch Insect Biochem Physiol

December 2024

Biological Control of Insects Research Laboratory, Research Park, USDA Agricultural Research Service, Columbia, Missouri, USA.

RNA interference (RNAi) is a promising technology for controlling insect pests of agriculture. This technology is mediated through the application of double-stranded RNAs (dsRNAs), which are processed within the insect cells into small interfering RNAs (siRNAs). These molecules then target and reduce the expression of the insect-specific genes that can kill or reduce the performance of the pest.

View Article and Find Full Text PDF

The genome of National Institute of Advanced Industrial Science and Technology (AIST), an obligate bacterial endosymbiont from a Japanese strain of the pea aphid , was determined. The genome sequence provides valuable information for comparative and evolutionary aspects of the intimate insect-microbe mutualism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!