Myasthenia gravis (MG) is characterized by reduced muscle endurance and is often accompanied by respiratory complications. Improvement of respiratory function is therefore an important objective in MG therapy. A previous study demonstrated that respiratory muscle endurance training (RMET) over four weeks increased respiratory muscle endurance of MG patients to about 200% of baseline. The purpose of the present study was to establish an appropriate maintenance training and to test its effects over four months. Ten patients with mild to moderate MG participated in this study. During the first month, they performed five training sessions per week. For the following 3 months, training frequency was reduced to five sessions per two weeks. Myasthenia score, lung function, and respiratory endurance were determined prior to training, after the first month, and after 4 months. Myasthenia score improved from 0.71 ± 0.1 to 0.56 ± 0.1 (P = 0.007). Respiratory endurance time increased from 6.1 ± 0.8 to 20.3 ± 3.0 min (P < 0.001). In conclusion, this RMET maintenance program is feasible and is significantly beneficial for MG patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159986 | PMC |
http://dx.doi.org/10.4061/2011/808607 | DOI Listing |
J Chiropr Med
August 2024
Department of Physical Education, São Paulo State University, São Paulo, Brazil.
Objective: The purpose of this case study was to report the effect of an 8-week Pilates intervention on a ballet dancer's strength, balance, and endurance.
Clinical Features: A healthy 24-year-old ballet dancer (50 kg, 1.66 meters, 12 years of practice and who had no previous experience with Pilates) presented for care.
J Oral Rehabil
January 2025
Coimbra Health School, Polytechnic University of Coimbra, Coimbra, Portugal.
Introduction: Playing a wind instrument is one of the most complex tasks for the musculoskeletal system.
Objective: Verify the effectiveness of a strengthening exercise programme on musical performance and the strength of the temporomandibular muscles.
Methods: The sample was 60 participants (36 men; 24 women), with a mean age of 24.
Sci Rep
January 2025
Laboratory of Biochemistry, College of Veterinary Medicine, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134, Korea.
The mechanisms underlying exercise-induced insulin sensitization are of great interest, as exercise is a clinically critical intervention for diabetic patients. Some microRNAs (miRs) are secreted from skeletal muscle after exercise where they regulate insulin sensitivity, and have potential as diagnostic markers in diabetic patients. miR-204 is well-known for its involvement in development, cancer, and metabolism; however, its role in exercise-induced glycemic control remains unclear.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
January 2025
Sansum Diabetes Research Institute, Santa Barbara, CA, USA.
Very-low-carbohydrate diets (LCHF; <50g/day) have been debated for their potential to lower pre-exercise muscle and liver glycogen stores and metabolic efficiency, risking premature fatigue. It is also hypothesized that carbohydrate ingestion during prolonged exercise delays fatigue by increasing carbohydrate oxidation, thereby sparing muscle glycogen. Leveraging a randomized crossover design, we evaluated performance during strenuous time-to-exhaustion (70%⩒O) tests in trained triathletes following 6-week high-carbohydrate (HCLF, 380g/day) or very-low-carbohydrate (LCHF, 40g/day) diets to determine (i) if adoption of the LCHF diet impairs time-to-exhaustion performance, (ii) whether carbohydrate ingestion (10g/hour) 6-12x lower than current CHO fuelling recommendations during low glycogen availability (>15-hour pre-exercise overnight fast and/or LCHF diet) improves time-to-exhaustion by preventing exercise-induced hypoglycemia (EIH; <3.
View Article and Find Full Text PDFInt J Sports Physiol Perform
January 2025
Department of Sport, Exercise and Health, Faculty of Medicine, University of Basel, Basel, Switzerland.
To define training zones, ventilatory thresholds (VTs) are commonly established by cardiopulmonary gas-exchange analysis during incremental exercise tests. Portable near-infrared spectroscopy (NIRS) devices have emerged as a potential tool for detecting these thresholds by monitoring muscle oxygenation. This study evaluated the accuracy of NIRS measurements to determine VTs or critical power (CP) based on muscle oxygen saturation and assesses the device's consistency across 2 constant-load tests.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!