Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Reduced gut microbiota diversity in conjunction with a bloom of few bacterial species is a common feature in inflammatory bowel disease (IBD) patients. However, the environmental changes caused by inflammation and their possible impact on the microbiota are largely unknown. Since IBD is associated with an impaired intestinal steroid metabolism, we hypothesized that changes in intestinal steroid and particularly bile acid (BA) concentrations affect microbial communities. We used Interleukin-10 deficient (IL-10-/-) mice as a model for chronic gut inflammation. Healthy wild-type mice served as controls. In these animals, intestinal steroid concentrations and gut microbial diversity were analyzed at 24 weeks of age. The IL 10-/- mice developed moderate inflammation in cecum and colon and colorectal tumor formation was observed in 55 % of the animals. Compared to the healthy conditions, gut inflammation was associated with higher intestinal cholesterol and cholic acid concentrations and a reduced microbial diversity. The latter was accompanied by a proliferation of Robinsoniella peoriensis, Clostridium innocuum, Escherichia coli, and Enterococcus gallinarum. All these species proved to be highly bile acid resistant. We concluded that chronic colitis in IL-10-/- mice is associated with changes in intestinal steroid profiles. These changes may be due to alterations in gut microbiota composition or vice versa. Whether the bacterial sterol and bile acid metabolism is implicated in colitis and colorectal carcinoma etiology remains to be clarified.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4161/gmic.2.3.16104 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!