Coordinated epigenetic regulation of autophagy and apoptosis.

Cell Cycle

INSERM, U848, Institut Gustave Roussy, Villejuif, France.

Published: September 2011

Download full-text PDF

Source

Publication Analysis

Top Keywords

coordinated epigenetic
4
epigenetic regulation
4
regulation autophagy
4
autophagy apoptosis
4
coordinated
1
regulation
1
autophagy
1
apoptosis
1

Similar Publications

The FvABF3-FvALKBH10B-FvSEP3 cascade regulates fruit ripening in strawberry.

Nat Commun

December 2024

State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.

Fruit ripening is a highly-orchestrated process that requires the fine-tuning and precise control of gene expression, which is mainly governed by phytohormones, epigenetic modifiers, and transcription factors. How these intrinsic regulators coordinately modulate the ripening remains elusive. Here we report the identification and characterization of FvALKBH10B as an N-methyladenosine (mA) RNA demethylase necessary for the normal ripening of strawberry (Fragaria vesca) fruit.

View Article and Find Full Text PDF

Elevated EBF2 in mouse but not pig drives the progressive brown fat lineage specification via chromatin activation.

J Adv Res

December 2024

College of Animal Science, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Shandong Agricultural University, Taian, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China. Electronic address:

Brown adipose tissue (BAT) is responsible for non-shivering thermogenesis, but it is absent in some mammals, including pigs. During development, BAT progenitors are derived from paired box 7 (Pax7)-expressing somitic mesodermal stem cells, which also give rise to skeletal muscle. However, the intrinsic mechanisms underlying the fate decisions between brown fat and muscle progenitors remain elusive.

View Article and Find Full Text PDF

Revealing long-range heterogeneous organization of nucleoproteins with N-methyladenine footprinting.

bioRxiv

December 2024

Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.

A major challenge in epigenetics is uncovering the dynamic distribution of nucleosomes and other DNA-binding proteins, which plays a crucial role in regulating cellular functions. Established approaches such as ATAC-seq, ChIP-seq, and CUT&RUN provide valuable insights but are limited by the ensemble nature of their data, masking the cellular and molecular heterogeneity that is often functionally significant. Recently, long-read sequencing technologies, particularly Single Molecule, Real-Time (SMRT/PacBio) sequencing, have introduced transformative capabilities, such as N-methyladenine (6mA) footprinting.

View Article and Find Full Text PDF

Higher order interaction analysis quantifies coordination in the epigenome revealing novel biological relationships in Kabuki syndrome.

Brief Bioinform

November 2024

Division of Developmental Biology & Medicine, Faculty of Biology, Medicine, and Health, School of Biological Sciences, The University of Manchester, Manchester, UK.

Complex direct and indirect relationships between multiple variables, termed higher order interactions (HOIs), are characteristics of all natural systems. Traditional differential and network analyses fail to account for the omic datasets richness and miss HOIs. We investigated peripheral blood DNA methylation data from Kabuki syndrome type 1 (KS1) and control individuals, identified 2,002 differentially methylated points (DMPs), and inferred 17 differentially methylated regions, which represent only 189 DMPs.

View Article and Find Full Text PDF

Human C1q is a multifaceted complement protein whose functions range from activating the complement classical pathway to immunomodulation and promoting placental development and tumorigenesis. It is encoded by the , , and genes located on chromosome 1. C1q, unlike most complement components, has extrahepatic expression by a range of cells including macrophages, monocytes and immature dendritic cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!