Effect of old age on human skeletal muscle force-velocity and fatigue properties.

J Appl Physiol (1985)

Muscle Physiology Laboratory, Dept. of Kinesiology, Univ. of Massachusetts, Amherst, Amherst MA 01003, USA.

Published: November 2011

It is generally accepted that the muscles of aged individuals contract with less force, have slower relaxation rates, and demonstrate a downward shift in their force-velocity relationship. The factors mediating age-related differences in skeletal muscle fatigue are less clear. The present study was designed to test the hypothesis that age-related shifts in the force-velocity relationship impact the fatigue response in a velocity-dependent manner. Three fatigue protocols, consisting of intermittent, maximum voluntary knee extension contractions performed for 4 min, were performed by 11 young (23.5 ± 0.9 yr, mean ± SE) and 10 older (68.9 ± 4.3) women. The older group fatigued less during isometric contractions than the young group (to 71.1 ± 3.7% initial torque and 59.8 ± 2.5%, respectively; P = 0.02), while the opposite was true during contractions performed at a relatively high angular velocity of 270°·s(-1) (old: 28.0 ± 3.9% initial power, young: 52.1 ± 6.9%; P < 0.01). Fatigue was not different (P = 0.74) between groups during contractions at an intermediate velocity, which was selected for each participant based on their force-velocity relationship. There was a significant association between force-velocity properties and fatigue induced by the intermediate-velocity fatigue protocol in the older (r = 0.72; P = 0.02) and young (r = 0.63; P = 0.04) groups. These results indicate that contractile velocity has a profound impact on age-related skeletal muscle fatigue resistance and suggest that changes in the force-velocity relationship partially mediate this effect.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3220307PMC
http://dx.doi.org/10.1152/japplphysiol.00367.2011DOI Listing

Publication Analysis

Top Keywords

force-velocity relationship
16
skeletal muscle
12
fatigue
8
muscle fatigue
8
contractions performed
8
force-velocity
6
age human
4
human skeletal
4
muscle force-velocity
4
force-velocity fatigue
4

Similar Publications

Purpose: Maximal muscle strength is often assessed with single-joint or repetition-maximum testing. The purpose of this study was to evaluate the reliability of countermovement-jump (CMJ) velocity-load testing and assess the relationship between CMJ velocity-load kinetics and concentric-isometric-eccentric multijoint leg-extension strength tested on a robotic servomotor leg press in trained athletes.

Methods: University athletes (N = 203; 52% female) completed 3 concentric, isometric, and eccentric maximum voluntary leg-extension contractions on the robotic leg press, followed by CMJ velocity-load testing with an additional external load of 0% (CMJBW), 30% (CMJ30), and 60% (CMJ60) of body mass.

View Article and Find Full Text PDF

Background: Objective training load (TL) indexes used in resistance training lack physiological significance. This study was aimed to provide a muscle physiology-based approach for quantifying TL in resistance exercises (REs).

Methods: Following individual torque-velocity profiling, fifteen participants (11 healthy males, stature: 178.

View Article and Find Full Text PDF

The Keiser 10-rep leg press test protocol employs short inter-repetition rest intervals (2-38 s), raising concerns as to whether athletes perform optimally. The aim of this study was to compare the results of the standard Keiser protocol with an identical protocol modified to include a significantly longer inter-repetition rest intervals and to evaluate whether these effects differed between men and women. A total of 30 athletes (age 17.

View Article and Find Full Text PDF

Purpose: We aimed to clarify how the horizontal force-velocity (Fvh) relationship during over-ground sprint running differs with horizontal resistance loads and profiling methods (multiple- and single-trial methods).

Methods: Twelve males performed sprint running (one unresisted and five resisted) using a motorized loading device. During the trials, the ground reaction forces at every step were obtained using a 50 m force plate system.

View Article and Find Full Text PDF

We compared the force-velocity (F-V) characteristics between jump squat (JS) and weightlifting (hang clean [HC] and HC pull [HCP]) to determine lower limb F-V portions targeted by weightlifting exercises. Ten weightlifters performed JS at 0% (body weight only) to 70% of their one-repetition maximum (1RM) for back squat, and HC and HCP at 30‒90% and 30‒110% of their 1RM for HC, respectively. Force and velocity values at each relative load were plotted to determine the F-V features of JS, HC, and HCP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!