Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Chronic lung inflammation has been associated with an increased risk of lung cancer. However, it is unclear whether such an event affects the incidence of mutations in the K-ras oncogene frequently found in lung tumors and suggested to be involved in lung tumorigenesis. This study investigated potential impacts of inflammation on the incidence of lung tumors and K-ras mutations using a mouse model.
Materials And Methods: FVB/N mice were treated with lipopolysaccharide (LPS) for 16 weeks with or without co-treatment with 4-(methyl-nitrosoamino)-1-(3-pyridyl)-1-butanone (NNK) during the first 4 weeks.
Results: There was a significant increase in lung inflammatory responses in mice treated with LPS and with LPS+NNK, compared with mice treated with NNK or with vehicle. The average number of lung tumors per mouse was 3.87 (between 1 and 6) and 0.73 (between 0 and 3) in mice treated with LPS+NNK and NNK alone, respectively (p<0.0001). No lung tumors were observed in mice treated with LPS or vehicle. A higher proportion of lung tumors from mice treated with LPS+NNK had K-ras mutations, compared with the mice treated with NNK alone (81.03% versus 45.45%, p<0.05).
Conclusion: LPS-elicited chronic lung inflammation significantly increases the risk of NNK-mediated lung tumorigenesis in FVB/N mice through K-ras gene activation by point mutations.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!