The use of protease-resistant D-peptides is a prominent strategy for overcoming proteolytic sensitivity in the use of cell-penetrating peptides (CPPs) as delivery vectors. So far, no major differences have been reported for the uptake of L- and D-peptides. Here we report that cationic L-CPPs are taken up more efficiently than their D-counterparts in MC57 fibrosarcoma and HeLa cells but not in Jurkat T leukemia cells. Reduced uptake of D-peptides co-occurred with persistent binding to heparan sulfates (HS) at the plasma membrane. In vitro binding studies of L- and D-peptides with HS indicated similar binding affinities. Our results identify two key events in the uptake of CPPs: binding to HS chains and the initiation of internalization. Only the second event depends on the chirality of the CPP. This knowledge may be exploited for a stereochemistry-dependent preferential targeting of cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chembiol.2011.06.006DOI Listing

Publication Analysis

Top Keywords

cell-penetrating peptides
8
uptake d-peptides
8
preferential uptake
4
uptake versus
4
versus d-amino
4
d-amino acid
4
acid cell-penetrating
4
peptides cell
4
cell type-dependent
4
type-dependent manner
4

Similar Publications

The ability to quench reactive oxygen species (ROS) overproduced in plant chloroplasts under light stress conditions is essential for securing plant photosynthetic performance and agricultural yield. Although genetic engineering can enhance plant stress resistance, its widespread application faces limitations due to challenges in successful transformation across plant species and public acceptance concerns. This study proposes a nontransgenic chemical approach using a designed chimeric peptide that scavenges ROS within plant chloroplasts for managing light stress.

View Article and Find Full Text PDF

Superoxide dismutase (SOD) plays important roles in the balance of oxidation and antioxidation in body mostly by scavenging superoxide anion free radicals (O). Previously, we reported a novel Cu/Zn SOD from jellyfish Cyanea capillata, named CcSOD1, which exhibited excellent SOD activity and high stability. TAT peptide is a common type of cell penetrating peptides (CPPs) that efficiently deliver extracellular biomacromolecules into cytoplasm.

View Article and Find Full Text PDF

Background: Low back pain (LBP) is predominantly caused by degeneration of the intervertebral disc (IVD) and central nucleus pulposus (NP) region. Conservative treatments fail to restore disc function, motivating the exploration of nucleic acid therapies, such as the use of microRNAs (miRNAs). miRNAs have the potential to modulate expression of discogenic factors, while silencing the catabolic cascade associated with degeneration.

View Article and Find Full Text PDF

EnDM-CPP: A Multi-view Explainable Framework Based on Deep Learning and Machine Learning for Identifying Cell-Penetrating Peptides with Transformers and Analyzing Sequence Information.

Interdiscip Sci

December 2024

School of Computer Science and Artificial Intelligence, Aliyun School of Big Data, School of Software, Changzhou University, Changzhou, 213164, China.

Cell-Penetrating Peptides (CPPs) are a crucial carrier for drug delivery. Since the process of synthesizing new CPPs in the laboratory is both time- and resource-consuming, computational methods to predict potential CPPs can be used to find CPPs to enhance the development of CPPs in therapy. In this study, EnDM-CPP is proposed, which combines machine learning algorithms (SVM and CatBoost) with convolutional neural networks (CNN and TextCNN).

View Article and Find Full Text PDF

Peptide Nanocarriers for Targeted Delivery of Nucleic Acids for Cancer Therapy.

Bioconjug Chem

December 2024

State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.

Peptides have been extensively studied in nanomedicine with great bioactivity and biocompatibility; however, their poor cell-membrane-penetrating properties and nonselectivity greatly limit their clinical applications. In this study, tumor-targeting therapy was achieved by modifying our previously developed efficient peptide vector with the cancer-targeting peptide RGD, enabling it to specifically target tumor cells with a high expression of RGD-binding receptors. B-cell lymphoma-2 antisense oligonucleotides were selected as the target model to validate the effectiveness of the delivery carriers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!