Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Here we describe our attempts to study the interaction of nanomodified surfaces with neurons and macrophages. Surfaces with nano-sized topographies produced by UV lithography, electrochemical etching, nanoimprint lithography, microdispensing, or by electrospinning of plastic nanofibers or by making plastic replicas of the extracellular matrix with nanoresolution were found to guide neurite outgrowth extending from the dorsal root and the superior cervical ganglion in tissue culture. Ordered arrays of nanowires acted as particularly potent guides for the neurites. Loose nanowires activated the macrophages. We conclude that relatively simple nanomodifications of surfaces can be utilized to guide neurites. This property could potentially be applied to guide neurite outgrowth on implants in the nervous system intended for recordings of electrical and/or chemical activities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/B978-0-444-53815-4.00002-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!