Xeno-free plant-derived hydrolysate-based freezing of human embryonic stem cells.

Stem Cells Dev

Department of Basic Medical Science, Faculty of Medicine and Health Science, Ghent University-UGent, Gent, Belgium.

Published: July 2012

Human embryonic stem cells (hESCs) are one of the most interesting cell types for tissue engineering and cell therapy. The large-scale banking of hESCs for research and future clinical application requires economic, defined, and xeno-free cryopreservation protocols. In this study, the possibility to substitute knockout serum replacement (KO-SR) in the cryopreservation process with vegetal and synthetic hydrolysates was investigated. To our knowledge, the use of hydrolysates in hESC cryopreservation has not been yet explored. Initially, 3 different hydrolysates (Ultrapep Soy, Hypep 4601 and EX-CELL(®) CD Hydrolysate Fusion) were tested in the cryopreservation solution. A concentration of 8 mg/mL EX-CELL CD Hydrolysate Fusion in the cryopreservation solution leads to the highest recovery ratio; thus, this solution was selected for additional cryopreservation experiments. To ensure reproducibility of the results, 3 hESC lines (HS181, H9, and BG01) were used. The hESCs were collected prefreezing by application of collagenase IV and cell dissociation solution. Experiments showed that it was feasible to substitute the KO-SR in both the cryopreservation solution as the thawing solution. The obtained recovery ratios were comparable to those obtained with KO-SR (no statistical significant difference; Student's t-test, P<0.05). Further optimization protocols showed a doubling of the obtained recovery ratio after addition of Rock-inhibitor Y-27632 post-thawing. The expansion profile and pluripotency analysis revealed no changes in normal hESC behavior. We conclude that the application of vegetal or synthetic hydrolysates is suitable for xeno-free hESC cryopreservation.

Download full-text PDF

Source
http://dx.doi.org/10.1089/scd.2011.0374DOI Listing

Publication Analysis

Top Keywords

cryopreservation solution
12
human embryonic
8
embryonic stem
8
stem cells
8
ko-sr cryopreservation
8
hydrolysate fusion
8
cryopreservation
7
solution
6
xeno-free plant-derived
4
plant-derived hydrolysate-based
4

Similar Publications

Cryopreservation, the use of very low temperatures to preserve structurally intact living cells and tissues, has seen exponential growth in the field of fertilization (IVF). In the last decade, cryopreservation of embryos and freeze-all protocols have become an essential aspect and a prerequisite for a successful IVF outcome. Moreover, vitrification, which is a fast and safe cryopreservation method, has proved to be an effective choice for cryopreserving gametes and embryos.

View Article and Find Full Text PDF

The increased cost and morbidity associated with diabetic foot ulcers (DFUs) place a substantial strain on the entire global healthcare system. In this trial, 24 subjects with a chronic DFU, Wagner grade 1 (University of Texas grade 1A), were treated with Standard of Care (SOC) therapy and randomized, one-half to receive advanced high-purity Type-I collagen-based skin substitute (HPTC; manufactured by Encoll Corp., Fremont, CA, USA), and the other half to receive a dehydrated human amnion/chorion membrane (dHACM) or viable cryopreserved human placental membrane (vCHPM).

View Article and Find Full Text PDF

Background: Chitosan nanoparticles (CsNPs) are an effective and inexpensive approach for DNA delivery into live cells. However, most CsNP synthesis protocols are not optimized to allow long-term storage of CsNPs without loss of function. Here, we describe a protocol for CsNP synthesis, lyophilization, and sonication, to store CsNPs and maintain transfection efficiency.

View Article and Find Full Text PDF

Ex situ conservation of plant genetic resources (PGR) plays a crucial role in sustainable growth and development, as highlighted by the Global Strategy for Plant Conservation (GSPC). Seed genebanks, a key component of ex situ conservation, have been instrumental in preserving plant diversity. However, challenges arise with the conservation of non-orthodox (recalcitrant and intermediate) seeds and vegetative tissues, which are not amenable to storage in traditional genebanks at temperatures of -20°C.

View Article and Find Full Text PDF

Evaluation of a Simple Antibiotic-Free Cryopreservation Protocol for Drone Semen.

Insects

January 2025

Fundamental and Applied Research for Animals and Health Research Unit (FARAH), Comparative Veterinary Medicine, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium.

The increasing reliance of modern agriculture on honey bee () pollination has driven efforts to preserve and enhance bee populations. The cryopreservation of drone semen presents a promising solution for preserving genetic diversity and supporting breeding programs without live animal transport risks. This study aimed to evaluate a one-step dilution antibiotic-free drone semen slow-freezing protocol under field conditions with in vitro and in vivo parameters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!