It has been suggested that the three-dimensional structure of one particle may be reconstructed using the scattering from many identical, randomly oriented copies ab initio, without modeling or a priori information. This may be possible if these particles are frozen in either space or time, so that the conventional two-dimensional small-angle x-ray scattering (SAXS) distribution contains fluctuations and is no longer isotropic. We consider the magnitude of the correlated fluctuation SAXS (CFSAXS) signal for typical x-ray free-electron laser (XFEL) beam conditions and compare this against the errors derived with the inclusion of Poisson photon counting statistics. The resulting signal-to-noise ratio (SNR) is found to rapidly approach a limit independent of the number of particles contributing to each diffraction pattern, so that the addition of more particles to a "single-particle-per-shot" experiment may be of little value, apart from reducing solvent background. When the scattering power is significantly less than one photon per particle per Shannon pixel, the SNR grows in proportion to incident flux. We provide simulations for protein molecules in support of these analytical results, and discuss the effects of solvent background scatter. We consider the SNR dependence on resolution and particle size, and discuss the application of the method to glasses and liquids, and the implications of more powerful XFELs, smaller focused beams, and higher pulse repetition rates for this approach. We find that an accurate CFSAXS measurement may be acquired to subnanometer resolution for protein molecules if a 9-keV beam containing 10(13) photons is focused to a ~100-nm spot diameter, provided that the effects of solvent background can be reduced sufficiently.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.84.011921 | DOI Listing |
Pharmaceutics
January 2025
Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy.
Background/objectives: This study investigates for the first time the use of the prilling technique in combination with solvent evaporation to produce nano- and submicrometric PLGA particles to deliver properly an active pharmaceutical ingredient. Curcumin (CCM), a hydrophobic compound classified under BCS (Biopharmaceutics Classification System) class IV, was selected as the model drug.
Methods: Key process parameters, including polymer concentration, solvent type, nozzle size, and surfactant levels, were optimized to obtain stable particles with a narrow size distribution determined by DLS analysis.
Pharmaceutics
January 2025
Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy.
This study investigates the preparation of coamorphous systems composed entirely of active pharmaceutical ingredients (APIs), namely praziquantel, niclosamide, and mebendazole. The objective was to formulate and characterize binary and ternary coamorphous systems to evaluate their structural, thermal, and stability properties. Ten different mixtures (binary and ternary) were designed through a mixture design approach and prepared using a sustainable, one-step neat grinding process in a lab-scale vibrational mill.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmaceutical Sciences, Università degli Studi di Milano, via G: Colombo, 71, 20133 Milano, Italy.
Background/objectives: The objective of this paper is to design a novel film-forming system (FFS) based on Eudragit E PO (EuE) polymeric solutions, differing in volatile solvents (i.e., isopropanol and ethanol) and plasticizers (i.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea.
The use of polymeric nanoparticles (NPs) in drug delivery systems offers the advantages of enhancing drug efficacy and minimizing side effects; In this study, L-threonine polyurethane (LTPU) NPs have been fabricated by water-in-oil-in-water emulsion and solvent evaporation using biodegradable and biocompatible LTPU. This polymer was pre-synthesized through the use of an amino acid-based chain extender, desaminotyrosyl L-threonine hexyl ester (DLTHE), where urethane bonds are formed by poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) triblock copolymer and 1,6-hexamethylene diisocyanate (HDI). LTPU is designed to be degraded by hydrolysis and enzymatic activity due to the presence of ester bonds and peptide bonds within the polymer backbone.
View Article and Find Full Text PDFPharmaceutics
December 2024
Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico.
Curcumin appears to be well tolerated and effective for managing chronic inflammatory pain, but its poor oral bioavailability has been a hurdle in its use as a therapeutic agent. The current study was performed to characterize a novel co-amorphous compound based on curcumin/L-arginine 1:2 (CAC12). : Stability, solubility and structural characterization of the CAC12 were carried out by spectrometry techniques and in vitro assays, whereas the antinociceptive and anti-inflammatory effects were evaluated by CFA or carrageenan models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!