Bulk modulus of poly(N-isopropylacrylamide) microgels through the swelling transition.

Phys Rev E Stat Nonlin Soft Matter Phys

School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA.

Published: July 2011

We report measurements of the bulk modulus of individual poly(N-isopropylacrylamide) microgels along their swelling transition. The modulus is determined by measuring the volume deformation of the microgel as a function of osmotic pressure using dextran solutions. We find that the modulus softens through the transition, displaying a nonmonotonous behavior with temperature. This feature is correctly reproduced by the theory of Flory for polymer gels, once the concentration dependence of the solvency parameter is properly incorporated.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.84.011406DOI Listing

Publication Analysis

Top Keywords

bulk modulus
8
polyn-isopropylacrylamide microgels
8
microgels swelling
8
swelling transition
8
modulus polyn-isopropylacrylamide
4
transition report
4
report measurements
4
measurements bulk
4
modulus individual
4
individual polyn-isopropylacrylamide
4

Similar Publications

Surfactant-free W/O high internal phase emulsions co-stabilized by beeswax and phytosterol crystal scaffold: A promising fat mimetic with enhanced mechanical and mouthfeel properties.

Food Res Int

February 2025

School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; School of Chemical Engineering and Energy Technology, Dongguan University of Technology, College Road 1, Dongguan 523808, China.

Water-in-oil high internal phase emulsions (W/O-HIPEs) typically rely on large amounts of surfactants to disperse water droplets and usually use crystalline saturated triacylglycerides (TAGs) to enhance processing properties. However, these practices conflict with consumer demands for 'natural' ingredients. This study seeks to develop novel crystal fractions similar to saturated TAGs for the preparation of W/O-HIPEs as low-calorie fat mimetics, focusing on their mechanical and mouthfeel properties, which have received little attention thus far.

View Article and Find Full Text PDF

Bulk-fill, monochromatic, and ORMOCER composites were introduced in restorative dentistry with the aim of reducing clinical time and/or alleviating contraction stresses at the interface between the tooth and restoration. While the conversion and immediate properties of these materials are comparable to conventional composites, studies evaluating their long-term properties and the structure of the polymer matrix are lacking. The objective of this study was to evaluate the degree of conversion and, indirectly, the crosslink density of conventional, bulk-fill, monochromatic, and ORMOCER resin composites.

View Article and Find Full Text PDF

Effective bulk and mass densities of randomly distributed coated cylinders in fluid.

J Acoust Soc Am

January 2025

Laboratoire Ondes et Milieux Complexes LOMC UMR CNRS 6294, Université Le Havre Normandie, 75 rue Bellot, Le Havre, France.

Inhomogeneous media made of random configurations of coated circular cylinders are considered. The effective properties-wave number, mass density, bulk modulus-are discussed and illustrated. The effects of the volume fraction of the scatterers and surrounding fluid are also examined.

View Article and Find Full Text PDF

Machine learning has advanced the rapid prediction of inorganic materials properties, yet data scarcity for specific properties and capturing thermodynamic stability remains challenging. We propose a framework utilizing a Graph Neural Network with composition-based and crystal structure-based architectures, combined with a transfer learning scheme. This approach accurately predicts energy-related properties (e.

View Article and Find Full Text PDF

Single-Crystal Elasticity of α-Hydroquinone-An Analogue for Organic Planetary Materials.

ACS Earth Space Chem

January 2025

Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, Texas 78249, United States.

In this study, we measured the single-crystal elasticity of α-hydroquinone at ambient conditions using Brillouin spectroscopy to assess the feasibility of this technique for studying the mechanical properties of organic ices in the outer solar system. In this study, α-hydroquinone serves as an ambient temperature analogue for low-temperature organic ices on Titan and other solar system bodies. We found that a satisfactory Brillouin spectrum can be obtained in less than 5 min of experimental time with negligible damage to the sample.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!