Defect dynamics in crystalline buckled membranes.

Phys Rev E Stat Nonlin Soft Matter Phys

Department of Physics and Instituto de Física del Sur, Universidad Nacional del Sur-CONICET, Av LN Além 1253, 8000 Bahía Blanca, Argentina.

Published: July 2011

We study the dynamics of defect annihilation in flexible crystalline membranes suffering a symmetry-breaking phase transition. The kinetic process leading the system toward equilibrium is described through a Brazovskii-Helfrich-Canham Hamiltonian. In membranes, a negative disclination has a larger energy than a positive disclination. Here we show that this energetic asymmetry does not only affect equilibrium properties, like the Kosterlitz-Thouless transition temperature, but also plays a fundamental role in the dynamic of defects. Both unbinding of dislocations and Carraro-Nelson "antiferromagnetic" interactions between disclinations slow down the dynamics below the Lifshitz-Safran regime observed in flat hexagonal systems.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.84.011123DOI Listing

Publication Analysis

Top Keywords

defect dynamics
4
dynamics crystalline
4
crystalline buckled
4
buckled membranes
4
membranes study
4
study dynamics
4
dynamics defect
4
defect annihilation
4
annihilation flexible
4
flexible crystalline
4

Similar Publications

Congenital heart disease (CHD) is a complex common defect in pediatric patients, and definitive treatment is usually cardiac surgery, especially for diseases with complex aetiology (ie, Critical CHD). While significant success has been reported due to improvement in diagnosis and treatment, the risk of mortality is still relatively higher than in the general population. Advances in surgical and post-surgical clinical management continue to increase survival in pediatric patients.

View Article and Find Full Text PDF

Cystic echinococcosis (CE) is a worldwide zoonotic public health issue. The reasons for this include a lack of specific therapy options, increasing antiparasitic drug resistance, a lack of control strategies, and the absence of an approved vaccine. The aim of the current study is to develop a multiepitope vaccine against CE by in-silico identification and using different Antigen B subunits.

View Article and Find Full Text PDF

Structural Repair of Reduced Graphene Oxide Promoted by Single-Layer Graphene.

Adv Sci (Weinh)

December 2024

Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.

High-temperature graphitization of graphene oxide (GO) is a crucial step for enhancing interlayer stacking and repairing the in-plane defects of reduced graphene oxide (rGO) films. However, the fine control of the structural repair and reducing the energy consumption in thermal treatment remain challenges. In this study, ab-initio molecular dynamics simulations combined with experiments are used to investigate the structural evolution of rGO upon thermal annealing, with or without the presence of single-layer graphene (SLG).

View Article and Find Full Text PDF

Activated/Cycling Treg Deficiency and Mitochondrial Alterations in Immunological Non-Responders to Antiretroviral Therapy.

Front Biosci (Landmark Ed)

December 2024

Pathology Advanced Translational Research Unit, Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.

Background: Regulatory T-cells (Tregs) play a crucial role in maintaining immune homeostasis, but their dynamics are altered in a subset of people living with Human Immunodeficiency Virus (HIV) known as immunological non-responders (INRs). INRs fail to reconstitute CD4 T-cell counts despite viral suppression. This study aimed to examine Treg dysregulation in INRs, comparing them to immunological responders (IRs) and healthy controls (HCs).

View Article and Find Full Text PDF

In addition to the usual loads, fixed jacket offshore platforms can be exposed to accidental loads from ship collisions. Indentation of tubular components is a significant defect that occurs when a supply vessel collides with a jacket platform, which can affect the ultimate strength of the offshore platform. This paper performs a nonlinear dynamic analysis using ABAQUS software to evaluate the ultimate strength of a wellhead jacket platform and to investigate its structural response to two consecutive impacts from a 2700-ton ship.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!