First-principles investigation of morphotropic transitions and phase-change functional responses in BiFeO3-BiCoO3 multiferroic solid solutions.

Phys Rev Lett

Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain.

Published: July 2011

We present an ab initio study of the BFCO solid solution formed by multiferroics BiFeO(3) (BFO) and BiFeO(3) (BCO). We find that BFCO presents a strongly discontinuous morphotropic transition between BFO-like and BCO-like ferroelectric phases. Further, for all compositions such phases remain (meta)stable and retain well-differentiated properties. Our results thus suggest that an electric field can be used to switch between these structures and show that such a switching involves large phase-change effects of various types, including piezoelectric, electric, and magnetoelectric ones.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.107.057601DOI Listing

Publication Analysis

Top Keywords

first-principles investigation
4
investigation morphotropic
4
morphotropic transitions
4
transitions phase-change
4
phase-change functional
4
functional responses
4
responses bifeo3-bicoo3
4
bifeo3-bicoo3 multiferroic
4
multiferroic solid
4
solid solutions
4

Similar Publications

Noble metal (Pd, Pt)-functionalized WSe monolayer for adsorbing and sensing thermal runaway gases in LIBs: a first-principles investigation.

Environ Res

January 2025

College of Energy and Electrical Engineering, Qinghai University, Xining, Qinghai, 810016, China; CHN Energy group Qinghai Electric Power Co., LTD, Xining, Qinghai, 810008, China. Electronic address:

This research using the first-principles theory introduces Pd- and Pt-functionalized WSe monolayers as promising materials for detecting three critical gases (H, CO, and CH), to evaluate the health of Li-ion battery (LIBs). Various sites on the pristine WSe monolayer are considered for the functionalization with Pd and Pt atoms. The adsorption performances of the determined Pd- and Pt-WSe monolayers upon the three gases are analyzed by the comparative highlight of the adsorption energy, bonding behavior and electron transfer.

View Article and Find Full Text PDF

Role of A-Site Cation Hydrogen Bonds in Hybrid Organic-Inorganic Perovskites: A Theoretical Insight.

J Phys Chem Lett

January 2025

MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China.

Hybrid organic-inorganic halide perovskites (HOIPs) have garnered a significant amount of attention due to their exceptional photoelectric conversion efficiency. However, they still face considerable challenges in large-scale applications, primarily due to their instability. One key factor influencing this instability is the lattice softness attributed to the A-site cations.

View Article and Find Full Text PDF

Controlling vibrational modes and energy gap by creating van der Waals (vdW) heterostructures through strain engineering is a novel approach to tailor the vibrational and electronic properties of two-dimensional (2D) materials. Numerous theoretical and experimental studies have significantly contributed to analysing the properties of transition metal dichalcogenides (TMDs), known for their multifunctional applications. In this study, we investigate the strain and stacking dependent vibrational properties of WSe2/MoSe2 and MoSe2/WSe2/MoSe2 vdW heterostructures using first-principles based density functional theory calculations.

View Article and Find Full Text PDF

The structural and electronic changes are investigated in a 3D hybrid perovskite, methylhydrazinium lead chloride (MHyPbCl) from a host/guest perspective as it transitions from a highly polar to less polar phase upon cooling, using first-principles calculations. The two phases vary structurally in the guest (MHy) orientation and the two differently distorted host (lead halide) layers. These findings highlight the critical role of guest reorientation in reducing host distortion at high temperatures, making the former the primary order parameter for the transition, a notable contrast to the case of other hybrid perovskites.

View Article and Find Full Text PDF

Context: The two-dimensional graphene/MoTe heterostructure holds extensive potential applications in optoelectronic devices, sensors, and catalysts. To expand its optical applications, this study systematically investigates the adsorption stability of metal atoms (Au, Pt, Pd, and Fe) on the graphene/MoTe and their influence on its optoelectronic properties employing first-principles methods. The findings indicate that after the adsorption of Au and Pd, the structure retains its direct bandgap properties, while the adsorption of Pt and Fe exhibits indirect bandgap characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!