Quantum interference and decoherence in single-molecule junctions is analyzed employing a nonequilibrium Green's function approach. Electrons tunneling through quasidegenerate states of a molecular junction exhibit interference effects. We show that electronic-vibrational coupling, inherent to any molecular junction, strongly quenches such interference effects. This decoherence mechanism may cause significantly larger electrical currents and is particularly pronounced if the junction is vibrationally highly excited, e.g., due to inelastic processes in the resonant transport regime.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.107.046802 | DOI Listing |
J Phys Condens Matter
January 2025
Condensed Matter Physics, Saha Institute of Nuclear Physics, Sector 1, Block AF, Bidhannagar, Kolkata 700 064, Kolkata, West Bengal, 700064, INDIA.
β-Mn-type chiral cubic CoxZnyMnz (x + y + z = 20) alloys present a intriguing platform for exploring topological magnetic orderings with promising spintronic potential. This study examines the magnetotransport properties of Co6.5Ru1.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.
Phys Rev Lett
December 2024
Department of Physics and Astronomy and Center for Fundamental Physics, Northwestern University, Evanston, Illinois 60208, USA.
We introduce a novel technique for enhancing the robustness of light-pulse atom interferometers against the pulse infidelities that typically limit their sensitivities. The technique uses quantum optimal control to favorably harness the multipath interference of the stray trajectories produced by imperfect atom-optics operations. We apply this method to a resonant atom interferometer and achieve thousandfold phase amplification, representing a 50-fold improvement over the performance observed without optimized control.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Mechanical and Electrical Engineering, Quzhou College of Technology, Quzhou, 324000, Zhejiang, China.
Integrating the Internet of Things (IoT) in smart grids has revolutionized the energy sector, enabling real-time data collection and efficient energy distribution. However, this integration also introduces significant security challenges, particularly data encryption. Traditional encryption algorithms used in IoT are vulnerable to various attacks, and the advent of quantum computing exacerbates these vulnerabilities.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Computer and Control Engineering, Qiqihar University, Qiqihar, 161000, China.
The rapid advancement of quantum key distribution technology in recent years has spurred significant innovation within the field. Nevertheless, a crucial yet frequently underexplored challenge involves the comprehensive evaluation of security quantum state modulation. To address this issue, we propose a novel framework for quantum group key distribution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!