A series of experiments to study the delayed effects of gamma-radiation exposure in different generations of the progenies of the Chinese hamster ovary CHO-K1 irradiated cells has been conducted. It has been shown that in the progenies of the cells irradiated with a dose of 1 Gy, the following effects are observed: in the 9-27 cell generations - increase in the genome damage, intracellular production of reactive oxygen species, apoptotic cells percentage and cell sensitivity to additional exposure (irradiation at a dose of 10 Gy); in the 30-42 cell generations - decrease of the studied parameters up to control values and increased resistance to additional exposure. It is assumed that the decrease of the studied parameters up to the control values in the 30-42 postirradiation generations of cells is caused by elimination of damaged cells or transition of genomic instability into a hidden (latent) condition.

Download full-text PDF

Source

Publication Analysis

Top Keywords

reactive oxygen
8
oxygen species
8
cell generations
8
additional exposure
8
decrease studied
8
studied parameters
8
parameters control
8
control values
8
cells
5
[genome damage
4

Similar Publications

Multifunctional CuBiS-BP@PEI Radiosensitizer with Enhanced Reactive Oxygen Species Activity for Multimodal Synergistic Therapy.

ACS Biomater Sci Eng

January 2025

Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.

Development of radiosensitizers with high-energy deposition efficiency, electron transfer, and oxidative stress amplification will help to improve the efficiency of radiotherapy. To overcome the drawbacks of radiotherapy alone, it is also crucial to design a multifunctional radiosensitizer that simultaneously realizes multimodal treatment and tumor microenvironment modulation. Herein, a multifunctional radiosensitizer based on the CuBiS-BP@PEI nanoheterostructure (NHS) for multimodal cancer treatment is designed.

View Article and Find Full Text PDF

Doxorubicin (DOX) is a commonly used chemotherapeutic medication for treating malignancies, although its cardiotoxicity limits its use. There is growing evidence that alteration of the mitochondrial fission/fusion dynamic processes accompanied by excessive reactive oxygen species (ROS) production and alteration of calcium Ca homeostasis are potential underlying mechanisms of DOX-induced cardiotoxicity (DIC). Metformin (Met) is an AMP-activated protein kinase (AMPK) activator that has antioxidant properties and cardioprotective effects.

View Article and Find Full Text PDF

Background: Atopic dermatitis (AD) is a chronic, pruritic, and inflammatory dermatosis seen in individuals with an atopic predisposition. This study aimed to examine the immunoreactivity of spexin and TRPM2 in skin samples from patients with AD and MF lesions using immunohistochemical methods.

Materials And Methods: The study utilized a total of 60 skin samples, comprising 20 from AD patients, 20 from MF patients, and 20 from control subjects.

View Article and Find Full Text PDF

Esophageal carcinoma is a highly prevalent malignancy worldwide. The present study aimed to investigate the mechanism by which the natural compound coptisine affects pyroptosis in esophageal squamous cell carcinoma (ESCC). The expression of c-Met in ESCC patients was assessed by immunohistochemical analysis of tissue microarrays.

View Article and Find Full Text PDF

Purpose: Sulfur mustard gas (SM) exposure to eyes causes multiple corneal injuries including stromal cell loss in vivo. However, mechanisms mediating stromal cell loss/death remains elusive. This study sought to test the novel hypothesis that SM-induced toxicity to human corneal stromal fibroblasts involves ferroptosis mechanism via p38 MAPK signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!