Purpose: The optimal electrode trajectory is needed to assist surgeons in planning Deep Brain Stimulation (DBS). A method for image-based trajectory planning was developed and tested.
Methods: Rules governing the DBS surgical procedure were defined with geometric constraints. A formal geometric solver using multimodal brain images and a template built from 15 brain MRI scans were used to identify a space of possible solutions and select the optimal one. For validation, a retrospective study of 30 DBS electrode implantations from 18 patients was performed. A trajectory was computed in each case and compared with the trajectories of the electrodes that were actually implanted.
Results: Computed trajectories had an average difference of 6.45° compared with reference trajectories and achieved a better overall score based on satisfaction of geometric constraints. Trajectories were computed in 2 min for each case.
Conclusion: A rule-based solver using pre-operative MR brain images can automatically compute relevant and accurate patient-specific DBS electrode trajectories.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11548-011-0651-8 | DOI Listing |
Int J Numer Method Biomed Eng
January 2025
Bioengineering, Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Gauteng, South Africa.
The imaging of the live cochlea is a challenging task. Regardless of the quality of images obtained from modern clinical imaging techniques, the internal structures of the cochlea mainly remain obscured. Electrical impedance tomography (EIT) is a safe, low-cost alternative medical imaging technique with applications in various clinical scenarios.
View Article and Find Full Text PDFEur Arch Otorhinolaryngol
January 2025
Vrije Universiteit Brussel, Brussels Health Centre, Brussels, Belgium.
Purpose: Cochlear implants (CI) are the most successful bioprosthesis in medicine probably due to the tonotopic anatomy of the auditory pathway and of course the brain plasticity. Correct placement of the CI arrays, respecting the inner ear anatomy are therefore important. The ideal trajectory to insert a cochlear implant array is defined by an entrance through the round window membrane and continues as long as possible parallel to the basal turn of the cochlea.
View Article and Find Full Text PDFNeurophysiol Clin
January 2025
Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK; Department of Neurosurgery, Great Ormond Street Hospital for Children, London, WC1N 3JH, UK.
Objectives: Computer-assisted planning (CAP) allows faster SEEG planning and improves grey matter sampling, orthogonal drilling angles to the skull, reduces risk scores and minimises intracerebral electrode length. Incorporating prior SEEG trajectories enhances CAP planning, refining output with centre-specific practices. This study significantly expands on the previous work, compares priors libraries between two centres, and describes differences between SEEG in adults and children in these centres.
View Article and Find Full Text PDFOper Neurosurg (Hagerstown)
September 2024
Department of Neurology, Washington University in St Louis, St Louis, Missouri, USA.
Background And Objectives: Surgical planning is critical to achieve optimal outcome in deep brain stimulation (DBS). The relationship between clinical outcomes and DBS electrode position relative to subthalamic nucleus (STN) is well investigated, but the role of surgical trajectory remains unclear. We sought to determine whether preoperatively planned DBS lead trajectory relates to adequate motor outcome in STN-DBS for Parkinson's disease (PD).
View Article and Find Full Text PDFAnal Chem
January 2025
Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, People's Republic of China.
The development of an atmospheric pressure interface (API) with a high ion transfer efficiency and wide mass range is advantageous for the performance improvement of mass spectrometry (MS) instruments. In this work, a novel ion guide, namely, the double-helix electrode ion funnel (DHE-IF), has been developed to enhance the ion transmission over a wide mass range in the rough vacuum region. The DHE-IF consists of two funnel-shaped helix electrodes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!