Background: Although tricyclic antidepressants amoxapine is proposed to target 5-HT and D2 receptors, very few studies have addressed the effect of amoxapine on molecular and cellular mechanisms via receptor pathways. In this study, we test the effect of amoxapine on rat cerebellar granule neurons (CGNs) to address this possibility.
Methods: CGNs cell culture, whole-cell current recording using a patch-clamp technique, western blot and non-radioactive detection analysis of phosphorylated protein kinase A (PKA) were used.
Results: Amoxapine inhibits delayed rectifier potassium (I(K)) current in a dose-dependent manner and modulates inactivation properties in CGNs. Those effects were not eliminated by preincubation with 5-HT or 5-HT receptor antagonists, but abolished by dopamine and D1/D5 receptor antagonists. Application of GTPγ-S and inhibitor of the Gs signalling cascade abolished the amoxapine-induced effect on I(K). The application of forskolin or dibutyryl-cAMP mimicked the inhibitory effect of amoxapine on I(K). Western blotting for phosphorylated PKA revealed that amoxapine significantly increased the intracellular levels of phosphorylated PKA, a marker of PKA activation.
Conclusion: Amoxapine inhibits I(K) currents in rat CGNs via cAMP/PKA-dependent pathways, as in mouse cortical neurons we reported earlier, but that involves D1-like receptors instead of 5-HT receptors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000331725 | DOI Listing |
J Affect Disord
December 2024
The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou 510370, China. Electronic address:
Life Sci
August 2024
Pharmacology & Transplantation (P&T), INSERM U1248, Université de Limoges, F-87000 Limoges, France. Electronic address:
Aims: Drug-induced enteropathy is often associated with the therapeutic use of certain glucuronidated drugs. One such drug is mycophenolic acid (MPA), a well-established immunosuppressant of which gastrointestinal adverse effects are a major concern. The role of bacterial β-glucuronidase (β-G) from the gut microbiota in MPA-induced enteropathy has recently been discovered.
View Article and Find Full Text PDFBiol Pharm Bull
February 2024
Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toho University.
Alzheimer's disease (AD) is accompanied by behavioral and psychological symptoms of dementia (BPSD), which is often alleviated by treatment with psychotropic drugs, such as antidepressants, hypnotics, and anxiolytics. If these drugs also inhibit acetylcholinesterase (AChE) activity, they may contribute to the suppression of AD progression by increasing brain acetylcholine concentrations. We tested the potential inhibitory effects of 31 antidepressants, 21 hypnotics, and 12 anxiolytics on recombinant human AChE (rhAChE) activity.
View Article and Find Full Text PDFToxicol Sci
October 2023
ApconiX, Macclesfield SK10 4TG, UK.
Seizure liability remains a significant cause of attrition throughout drug development. Advances in stem cell biology coupled with an increased understanding of the role of ion channels in seizure offer an opportunity for a new paradigm in screening. We assessed the activity of 15 pro-seizurogenic compounds (7 CNS active therapies, 4 GABA receptor antagonists, and 4 other reported seizurogenic compounds) using automated electrophysiology against a panel of 14 ion channels (Nav1.
View Article and Find Full Text PDFNanomedicine (Lond)
December 2022
Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, Guwahati, Sila Katamur (Halugurisuk), Changsari, Dist. Kamrup, Assam, 781101, India.
Amoxapine (AMX) has been reported to be metabolized by CYP3A4 and CYP2D6. Naringin (NG) has been reported to inhibit CYP enzymes. Therefore, the current work was designed to develop AMX solid lipid nanoparticles (AMX-SLNs) and NG-SLNs for better therapeutic performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!