Glucocorticoids regulate the function of dendritic cells (DCs), antigen-presenting cells linking innate and adaptive immunity. Glucocorticoids influence the function of other cell types by modulating the activity of the Na(+)/H(+)exchanger (NHE), a carrier involved in the regulation of cytosolic pH and cell volume. The present study explored whether dexamethasone influences Na(+)/H(+) exchanger activity in DCs. The DCs were isolated from mouse bone marrow, cell volume was estimated from forward scatter in FACS analysis, cytosolic pH (pH(i)) utilizing BCECF fluorescence and Na(+)/H(+) exchanger activity from the Na(+) dependent realkalinization after an ammonium pulse. Treatment with the glucocorticoid dexamethasone (100 nM; 1, 4, 16 and 24h) significantly decreased pH(i) (≥4 h) and gradually increased Na(+)/H(+) exchanger activity (=16 h). The stimulation of Na(+)/H(+) exchanger activity by dexamethasone was virtually abrogated by glucocorticoid receptor blocker mefiprestone (1 μM) and NHE3 inhibitor dimethyl amiloride (5 μM), but not prevented by NHE1 inhibitor cariporide (10 μM). Dexamethasone treatment significantly increased SGK1 mRNA levels. Stimulation of Na(+)/H(+) exchanger activity by dexamethasone was blunted in DCs lacking SGK1. Dexamethasone treatment did not significantly alter ROS formation but significantly decreased the forward scatter. Exposure of DCs to lipopolysacharide (LPS, 1 μg/ml) led to a transient increase followed by a decline of Na(+)/H(+) exchanger activity and to enhanced forward scatter as well as ROS formation, all effects significantly blunted in the presence of dexamethasone (100 nM). In conclusion, glucocorticoid treatment decreased pH(i) and cell volume, effects paralleled by upregulation of Na(+)/H(+) exchanger activity in DCs. Moreover, glucocorticoids blunted the stimulation of Na(+)/H(+) exchanger activity, cell swelling and ROS formation following LPS treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000331746DOI Listing

Publication Analysis

Top Keywords

na+/h+ exchanger
36
exchanger activity
36
cell volume
12
forward scatter
12
stimulation na+/h+
12
ros formation
12
activity
10
na+/h+
9
exchanger
9
dendritic cells
8

Similar Publications

Comprehensive Analysis of the NHX Gene Family and Its Regulation Under Salt and Drought Stress in Quinoa ( Willd.).

Genes (Basel)

January 2025

Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea.

: Abiotic stresses such as salinity and drought significantly constrain crop cultivation and affect productivity. Quinoa ( Willd.), a facultative halophyte, exhibits remarkable tolerance to drought and salinity stresses, making it a valued model for understanding stress adaptation mechanisms.

View Article and Find Full Text PDF

The cation-proton antiporter (CPA) superfamily plays pivotal roles in regulating cellular ion and pH homeostasis in plants. To date, the regulatory functions of CPA family members in rice (Oryza sativa L.) have not been elucidated.

View Article and Find Full Text PDF

Shaking it off: loss of NHE3-mediated calcium reabsorption is compensated by the distal nephron.

Kidney Int

February 2025

Department of Pediatrics, The Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada. Electronic address:

Sodium reabsorption is tightly coupled to calcium reabsorption in the proximal tubule via the action of the Na/H exchanger isoform 3 (NHE3). Poulsen et al. provide evidence of reduced proximal calcium reabsorption in kidney tubule-specific NHE3-deficient mice that is compensated distally, unaltered phosphate homeostasis, and NHE3 involvement in the hypocalciuric effect of thiazides.

View Article and Find Full Text PDF

Elemental cryo-imaging reveals SOS1-dependent vacuolar sodium accumulation.

Nature

January 2025

Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

Increasing soil salinity causes significant crop losses globally; therefore, understanding plant responses to salt (sodium) stress is of high importance. Plants avoid sodium toxicity through subcellular compartmentation by intricate processes involving a high level of elemental interdependence. Current technologies to visualize sodium, in particular, together with other elements, are either indirect or lack in resolution.

View Article and Find Full Text PDF

NHERF2 regulatory function in signal transduction pathways and control of gene expression: Implications for cellular homeostasis and breast cancer.

Arch Med Res

January 2025

Programa de Investigación de Cancer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico. Electronic address:

Na⁺/H⁺ exchanger regulatory factor 2 (NHERF2) is a nucleocytoplasmic protein initially identified as a regulator of membrane-bound sodium-hydrogen exchanger 3 (NHE3). In the cytoplasm, NHERF2 regulates the activity of G protein-coupled receptors (GPCRs), including beta-2 adrenergic receptor (2β-AR), lysophosphatidic acid receptor 2, and parathyroid hormone type 1 receptor. In the nucleus, NHERF2 acts as a coregulator of transcription factors such as sex-determining region Y protein (SRY), involved in male sex determination, and estrogen receptor alpha (ERα).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!