Prevention of estradiol 17beta-D-glucuronide-induced canalicular transporter internalization by hormonal modulation of cAMP in rat hepatocytes.

Mol Biol Cell

Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, S2002LRL Rosario, Argentina.

Published: October 2011

In estradiol 17β-d-glucuronide (E17G)-induced cholestasis, the canalicular hepatocellular transporters bile salt export pump (Abcb11) and multidrug-resistance associated protein 2 (Abcc2) undergo endocytic internalization. cAMP stimulates the trafficking of transporter-containing vesicles to the apical membrane and is able to prevent internalization of these transporters in estrogen-induced cholestasis. Hepatocyte levels of cAMP are regulated by hormones such as glucagon and adrenaline (via the β2 receptor). We analyzed the effects of glucagon and salbutamol (a β2 adrenergic agonist) on function and localization of Abcb11 and Abcc2 in isolated rat hepatocyte couplets exposed to E17G and compared the mechanistic bases of their effects. Glucagon and salbutamol partially prevented the impairment in Abcb11 and Abcc2 transport capacity. E17G also induced endocytic internalization of Abcb11 and Abcc2, which partially colocalized with the endosomal marker Rab11a. This effect was completely prevented by salbutamol, whereas some transporter-containing vesicles remained internalized and mainly colocalizing with Rab11a in the perinuclear region after incubation with glucagon. Glucagon prevention was dependent on cAMP-dependent protein kinase (PKA) and independent of exchange proteins activated directly by cAMP (Epac) and microtubules. In contrast, salbutamol prevention was PKA independent and Epac/MEK and microtubule dependent. Anticholestatic effects of glucagon and salbutamol were additive in nature. Our results show that increases in cAMP could activate different anticholestatic signaling pathways, depending on the hormonal mediator involved.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3192868PMC
http://dx.doi.org/10.1091/mbc.E11-01-0047DOI Listing

Publication Analysis

Top Keywords

effects glucagon
12
glucagon salbutamol
12
abcb11 abcc2
12
endocytic internalization
8
transporter-containing vesicles
8
pka independent
8
glucagon
6
camp
5
salbutamol
5
prevention estradiol
4

Similar Publications

Exploring Liraglutide's mechanism in reducing renal fibrosis: the Fsp1-CoQ10-NAD(P)H pathway.

Sci Rep

January 2025

Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, NO.3, Luqian Xingyuan Road, Shijiazhuang, 050200, Hebei Province, China.

Studies have confirmed that elevated glucose levels could lead to renal fibrosis through the process of ferroptosis. Liraglutide, a human glucagon-like peptide-1 (GLP-1) analogue, is a potential treatment option for diabetes. This study aimed to examine the potential of liraglutide (LIRA) in inhibiting ferroptosis and reducing high glucose-induced renal fibrotic injury in mice, and whether the Fsp1-CoQ10-NAD(P)H signal pathway is a mechanism for this effect.

View Article and Find Full Text PDF

Pro-healing impact of liraglutide on skin wounds in normoglycemic mice.

Int Immunopharmacol

January 2025

Division of Endocrinology, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, 430030, PR China; Branch of National Clinical Research Center for Metabolic Diseases, Hubei, PR China. Electronic address:

Recent studies demonstrated that glucagon-like peptide-1 receptor agonists (GLP-1RA) have promising prospects in promoting wound healing. In this study, we intend to investigate the pro-healing effect and potential molecular mechanism of topical administration of GLP-1RA liraglutide on wounds in normoglycemic mice. Two full-thickness wounds were created on the back of the C57BL/6 mice.

View Article and Find Full Text PDF

Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153.

View Article and Find Full Text PDF

Background: Glucagon-like peptide-1 receptor agonists (GLP1RAs) are widely used in manageing type 2 diabetes mellitus and weight control. Their potential in treating ageing-related diseases has been gaining attention in recent years. However, the long-term effects of GLP1RAs on these diseases have yet to be fully revealed.

View Article and Find Full Text PDF

Background: Implementation of semaglutide weight loss therapy has been challenging due to drug supply and cost, underscoring a need to identify those who derive the greatest absolute benefit.

Objectives: Allocation of semaglutide was modeled according to coronary artery calcium (CAC) among individuals without diabetes or established atherosclerotic cardiovascular disease (CVD).

Methods: In this analysis, 3,129 participants in the MESA (Multi-Ethnic Study of Atherosclerosis) without diabetes or clinical CVD met body mass index criteria for semaglutide and underwent CAC scoring on noncontrast cardiac computed tomography.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!