From forest to field: perennial fruit crop domestication.

Am J Bot

Department of Biology, Saint Louis University, 3507 Laclede Avenue, Saint Louis, Missouri 63103 USA.

Published: September 2011

Premise Of The Study: Archaeological and genetic analyses of seed-propagated annual crops have greatly advanced our understanding of plant domestication and evolution. Comparatively little is known about perennial plant domestication, a relevant topic for understanding how genes and genomes evolve in long-lived species, and how perennials respond to selection pressures operating on a relatively short time scale. Here, we focus on long-lived perennial crops (mainly trees and other woody plants) grown for their fruits.

Key Results: We reviewed (1) the basic biology of long-lived perennials, setting the stage for perennial domestication by considering how these species evolve in nature; (2) the suite of morphological features associated with perennial fruit crops undergoing domestication; (3) the origins and evolution of domesticated perennials grown for their fruits; and (4) the genetic basis of domestication in perennial fruit crops.

Conclusions: Long-lived perennials have lengthy juvenile phases, extensive outcrossing, widespread hybridization, and limited population structure. Under domestication, these features, combined with clonal propagation, multiple origins, and ongoing crop-wild gene flow, contribute to mild domestication bottlenecks in perennial fruit crops. Morphological changes under domestication have many parallels to annual crops, but with key differences for mating system evolution and mode of reproduction. Quantitative trait loci associated with domestication traits in perennials are mainly of minor effect and may not be stable across years. Future studies that take advantage of genomic approaches and consider demographic history will elucidate the genetics of agriculturally and ecologically important traits in perennial fruit crops and their wild relatives.

Download full-text PDF

Source
http://dx.doi.org/10.3732/ajb.1000522DOI Listing

Publication Analysis

Top Keywords

perennial fruit
20
fruit crops
12
domestication
10
perennial
8
annual crops
8
plant domestication
8
long-lived perennials
8
crops
6
fruit
5
perennials
5

Similar Publications

Genome-wide association analysis of flowering date in a collection of cultivated olive tree.

Hortic Res

January 2025

UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France.

Flowering date in perennial fruit trees is an important trait for fruit production. Depending on the winter and spring temperatures, flowering of olive may be advanced, delayed, or even suppressed. Deciphering the genetic control of flowering date is thus key to help selecting cultivars better adapted to the current climate context.

View Article and Find Full Text PDF

Genetic Diversity and Fingerprinting of 231 Mango Germplasm Using Genome SSR Markers.

Int J Mol Sci

December 2024

National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticulture Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China.

Mango ( L.) (2n = 40) is an important perennial fruit tree in tropical and subtropical regions. The lack of information on genetic diversity at the molecular level hinders efforts in mango genetic improvement and molecular marker-assisted breeding.

View Article and Find Full Text PDF

Chilean Papaya (): A Native Fruit with a High Health-Promoting Functional Potential.

Antioxidants (Basel)

December 2024

Department of Food Science and Chemical Technology, Faculty of Chemical Sciences and Pharmaceutical, Universidad de Chile, St. Dr. Carlos Lorca 964, Independencia, Santiago 8380494, Chile.

Papaya fruit is commonly known for its nutritional and medicinal value. It is a perennial, herbaceous, and trioecious cross-pollinated species with male, female, and hermaphrodite plants. The Chilean papaya, originating from South America, has been extensively spread throughout the Andean nations, cultivated primarily in the Coquimbo and Valparaíso valleys in Chile, between 34°41' and 36°33' latitude south.

View Article and Find Full Text PDF

Background: Virus-induced gene silencing (VIGS) is a rapid and powerful method for gene functional analysis in plants that pose challenges in stable transformation. Numerous VIGS systems based on Agrobacterium infiltration has been widely developed for tender tissues of various plant species, yet none is available for recalcitrant perennial woody plants with firmly lignified capsules, such as tea oil camellia. Therefore, there is an urgent need for an efficient, robust, and cost-effective VIGS system for recalcitrant tissues.

View Article and Find Full Text PDF

Mast seeding, the synchronous and highly variable production of seed crops by perennial plants, is a population-level phenomenon and has cascading effects in ecosystems. Mast seeding studies are typically conducted at the population/species level. Much less is known about synchrony in mast seeding between species because the necessary long-term data are rarely available.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!