Detection of explosive remnants of war by neutron thermalisation.

Appl Radiat Isot

Department of Physics, University of Cape Town, Rondebosch 7701, South Africa.

Published: January 2012

The HYDAD-D landmine detector (Brooks and Drosg, 2005) has been modified and field-tested for 17 months in a variety of soil conditions. Test objects containing about the same mass of hydrogen (20g) as small explosive remnants of war, such as antipersonnel landmines, were detected with efficiency 100% when buried at cover depths up to 10cm. The false alarm rate under the same conditions was 9%. Plots of detection efficiency versus false alarm rate are presented.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apradiso.2011.07.006DOI Listing

Publication Analysis

Top Keywords

explosive remnants
8
remnants war
8
false alarm
8
alarm rate
8
detection explosive
4
war neutron
4
neutron thermalisation
4
thermalisation hydad-d
4
hydad-d landmine
4
landmine detector
4

Similar Publications

Increased impact sensitivity in ageing high explosives; analysis of Amatol extracted from explosive remnants of war.

R Soc Open Sci

March 2024

Norwegian Defence Research Establishment (FFI), P.O. Box 25, Kjeller 2027, Norway.

Millions of tonnes of explosive remnants of war remain in nature and their volume is continuously growing. The explosive legacy of wars represents an increasing threat to the environment and societal safety and security. As munitions continue to deteriorate, harmful constituents will eventually leak into the environment, poisoning ecological receptors and contaminating the surrounding soil and groundwater.

View Article and Find Full Text PDF

The nearby Supernova 1987A was accompanied by a burst of neutrino emission, which indicates that a compact object (a neutron star or black hole) was formed in the explosion. There has been no direct observation of this compact object. In this work, we observe the supernova remnant with JWST spectroscopy, finding narrow infrared emission lines of argon and sulfur.

View Article and Find Full Text PDF

Neutron stars and stellar-mass black holes are the remnants of massive star explosions. Most massive stars reside in close binary systems, and the interplay between the companion star and the newly formed compact object has been theoretically explored, but signatures for binarity or evidence for the formation of a compact object during a supernova explosion are still lacking. Here we report a stripped-envelope supernova, SN 2022jli, which shows 12.

View Article and Find Full Text PDF

Development of lycopene-based whole-cell biosensors for the visual detection of trace explosives and heavy metals.

Anal Chim Acta

December 2023

Energy-rich Compound Production By Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, PR China. Electronic address:

Residual explosives in conflicting zones have caused irreversible damage to human safety and the environment. Whole-cell biosensors can to detect remnants of buried explosives, such as 2,4-dinitrotoluene (DNT), a stable and highly volatile compound in explosives. However, all the reported whole-cell biosensors utilize fluorescence or luminescence as the biological markers, making their detection difficult in real minefields.

View Article and Find Full Text PDF

Massive stars die in catastrophic explosions that seed the interstellar medium with heavy elements and produce neutron stars and black holes. Predictions of the explosion's character and the remnant mass depend on models of the star's evolutionary history. Models of massive star interiors can be empirically constrained by asteroseismic observations of gravity wave oscillations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!