Sensing of RNA virus infection by the RIG-I-like receptors (RLRs) engages a complex signaling cascade that utilizes the mitochondrial antiviral signaling (MAVS) adapter protein to orchestrate the innate host response to pathogen, ultimately leading to the induction of antiviral and inflammatory responses mediated by type I interferon (IFN) and NF-κB pathways. MAVS is localized to the outer mitochondrial membrane, and has been associated with peroxisomes, the endoplasmic reticulum and autophagosomes, where it coordinates signaling events downstream of RLRs. MAVS not only plays a pivotal role in the induction of antiviral and inflammatory pathways but is also involved in the coordination of apoptotic and metabolic functions. This review summarizes recent findings related to the MAVS adapter and its essential role in the innate immune response to RNA viruses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.coi.2011.08.001 | DOI Listing |
Cells
November 2024
Laboratory of Embryology and Genetics of Human Malformations, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 24 Boulevard du Montparnasse, 75015 Paris, France.
Adenosine deaminase acting on RNA 1 (ADAR1) is the principal enzyme for the adenosine-to-inosine RNA editing that prevents the aberrant activation of cytosolic nucleic acid sensors by endogenous double stranded RNAs and the activation of interferon-stimulated genes. In mice, the conditional neural crest deletion of reduces the survival of melanocytes and alters the differentiation of Schwann cells that fail to myelinate nerve fibers in the peripheral nervous system. These myelination defects are partially rescued upon the concomitant removal of the Mda5 antiviral dsRNA sensor in vitro, suggesting implication of the Mda5/Mavs pathway and downstream effectors in the genesis of mutant phenotypes.
View Article and Find Full Text PDFFront Cell Infect Microbiol
November 2024
College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
Introduction: Since 2016, a highly lethal visceral gout induced by infection with the novel goose astrovirus (GoAstV) resulted in an ongoing outbreak in goslings in China, with a mortality rate ranging from 10% to 50%, and causing considerable economic losses in the goose industry. However, the pathogenesis of GoAstV and the molecular mechanism by which kidney lesions are induced by GoAstV infection are unclear.
Methods: In the present study, a GEK cell infection model for GoAstV was established, and the apoptosis, inflammatory and innate immune responses induced by GoAstV were investigated in GEK cells.
J Immunol
March 2024
Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.
Mitochondrial antiviral signaling protein (MAVS), as a central adapter protein in retinoic acid-inducible gene I-like receptor signaling, is indispensable for innate antiviral immunity. Yet, the molecular mechanisms modulating the stability of MAVS are not fully understood in low vertebrates. In this study, we report that the deubiquitinase ubiquitin-specific protease 13 (USP13) acts as a negative regulator of antiviral immunity by targeting MAVS for selective autophagic degradation in teleost fish.
View Article and Find Full Text PDFNat Commun
November 2023
Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA.
RIG-I is an essential innate immune receptor that responds to infection by RNA viruses. The RIG-I signaling cascade is mediated by a series of post-translational modifications, the most important of which is ubiquitination of the RIG-I Caspase Recruitment Domains (CARDs) by E3 ligase Riplet. This is required for interaction between RIG-I and its downstream adapter protein MAVS, but the mechanism of action remains unclear.
View Article and Find Full Text PDFNat Commun
September 2023
State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
MAVS is an adapter protein involved in RIG-I-like receptor (RLR) signaling in mitochondria, peroxisomes, and mitochondria-associated ER membranes (MAMs). However, the role of MAVS in glucose metabolism and RLR signaling cross-regulation and how these signaling pathways are coordinated among these organelles have not been defined. This study reports that RLR action drives a switch from glycolysis to the pentose phosphate pathway (PPP) and the hexosamine biosynthesis pathway (HBP) through MAVS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!