A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transposon-mediated gene transfer into adult and induced pluripotent stem cells. | LitMetric

Transposon-mediated gene transfer into adult and induced pluripotent stem cells.

Curr Gene Ther

Division of Gene Therapy & Regenerative Medicine,, Faculty of Medicine & Pharmacy, University Medical Center-Jette, Free University of Brussels, Laarbeeklaan 103, Brussels, Belgium.

Published: October 2011

Transposon technology is a particularly attractive non-viral gene delivery paradigm that allows for efficient genomic integration into a variety of different cell types. In particular, transposon-mediated gene transfer is a promising tool for stem cell research, by virtue of its ability to efficiently and stably transfer genes into adult and induced pluripotent stem (iPS) cells. Moreover, transposons open up new perspectives for non-viral-mediated stem cell-based gene therapy. Several transposon systems, especially the Sleeping Beauty (SB), the piggyBac (PB) and Tol2, have been optimized for gene transfer into mammalian cells. In particular, SB resulted in stable gene transfer into various adult stem cells including human CD34(+) hematopoietic stem cells (HSCs), myoblasts and mesenchymal stem cells (MSCs). This has been confirmed with PB, yielding stable gene transfer in human CD34(+) HSCs. Recently, PB transposons were used to deliver the genes encoding the reprogramming factors into somatic cells making it an attractive technology for generating iPS cells. Subsequent de novo expression of the PB transposase resulted in traceless excision of the reprogramming cassette. This prevented inadvertent re-expression of the reprogramming factors obviating some of the concerns associated with the use of integrating vectors. Transposons have also been used as a novel non-viral paradigm to coax differentiation of iPS cells into their desired target cells by forced expression of specific differentiation factors. This review focuses on the emerging potential of transposons for gene transfer into stem cells and its implications for gene therapy and regenerative medicine.

Download full-text PDF

Source
http://dx.doi.org/10.2174/156652311797415836DOI Listing

Publication Analysis

Top Keywords

gene transfer
24
stem cells
20
ips cells
12
cells
11
transposon-mediated gene
8
transfer adult
8
adult induced
8
induced pluripotent
8
stem
8
pluripotent stem
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!