There is an urgent global need for preventive strategies against HIV-1 infections. Llama heavy-chain antibody fragments (VHH) are a class of molecules recently described as potent cross-clade HIV-1 entry inhibitors. We studied the potential of a VHH-based microbicide in an application-oriented fashion. We show that VHH can be inexpensively produced in high amounts in the GRAS organism Saccharomyces cerevisiae, resulting in a very pure and endotoxin free product. VHH are very stable under conditions they might encounter during transport, storage, or use by women. We developed active formulations of VHH in aqueous gel and compressed and lyophilized tablets for controlled release from an intravaginal device. The release profile of the VHH from, e.g., a vaginal ring suggests sufficient bioavailability and protective concentration of the molecule at the mucosal site at the moment of the infection. The ex vivo penetration kinetics through human tissues show that the VHH diffuse into the mucosal layer and open the possibility to create a second defense layer either by blocking the HIV receptor binding sites or by blocking the receptors of immune cells in the mucosa. In conclusion, our data show that VHH have a high potential for HIV-1 microbicide application because of their low production costs, their high stability, and their favorable release and tissue penetration properties.

Download full-text PDF

Source
http://dx.doi.org/10.1089/aid.2011.0133DOI Listing

Publication Analysis

Top Keywords

antibody fragments
8
vhh
7
llama antibody
4
fragments good
4
good potential
4
potential application
4
application hiv
4
hiv type
4
type topical
4
topical microbicides
4

Similar Publications

Objectives: Given the ongoing challenges regarding the specific roles of viral infections in cancer etiology, or as cancer co-morbidities, this study assessed potential associations between anti-viral, T-cell receptor (TCR) complementarity domain region-3 (CDR3s), and clinical outcomes for ovarian cancer.

Methods: TCR CDR3s were isolated from ovarian cancer specimens for a determination of which patients had anti-viral CDR3s and whether those patients had better or worse outcomes.

Results: Analyses revealed that patients with exact matches of anti-Epstein-Barr virus (EBV) CDR3 amino acid sequences exhibited better outcomes for both overall and disease-specific survival.

View Article and Find Full Text PDF

Background: The use of new biological medicines as standard treatment is expected to increase substantially and cover new therapeutic indications in the near future. Interchange of biological medicines in pharmacies increases the need for patient guidance.

Objectives: The study aims to gain a patient perspective on biological medicine users' needs and wishes regarding patient guidance by exploring what kind of information patients wish to receive and to further investigate the potential differences in needs between originator biological medicine users and biosimilar users.

View Article and Find Full Text PDF

The field of antibody therapeutics is rapidly growing, with over 210 antibodies currently approved or in regulatory review and ~ 1,250 antibodies in clinical development. Antibodies are highly versatile molecules that, with strategic design of their antigen-binding domain (Fab) and the domain responsible for mediating effector functions (Fc), can be used in a wide range of therapeutic indications. Building on many years of progress, the biopharmaceutical industry is now advancing innovative research and development by exploring new targets and new formats and using antibody engineering to fine-tune functions tailored to specific disease requirements.

View Article and Find Full Text PDF

The development of stable biopharmaceutical formulations, such as monoclonal antibodies, poses a great challenge in the pharmaceutical industry. This study investigated the stabilizing effect of 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) in liquid and solid formulations of infliximab during processing and storage. The solid formulation was produced by a scaled-up high-speed electrospinning method, resulting in a product suitable for reconstitution with excellent dissolution properties.

View Article and Find Full Text PDF

Malaria, a life-threatening disease caused by Plasmodium parasites, continues to pose a significant global health threat, with nearly 250 million infections and over 600 000 deaths reported annually by the WHO. Fighting malaria is particularly challenging partly due to the complex life cycle of the parasite. However, technological breakthroughs such as the development of the nucleoside-modified mRNA lipid nanoparticle (mRNA-LNP) vaccine platform, along with the discovery of novel conserved Plasmodium antigens such as the E140 protein, present new opportunities in malaria prevention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!