Oxime linkage: a robust tool for the design of pH-sensitive polymeric drug carriers.

Biomacromolecules

School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.

Published: October 2011

Oxime bonds dispersed in the backbones of the synthetic polymers, while young in the current spectrum of the biomedical application, are rapidly extending into their own niche. In the present work, oxime linkages were confirmed to be a robust tool for the design of pH-sensitive polymeric drug delivery systems. The triblock copolymer (PEG-OPCL-PEG) consisting of hydrophilic poly(ethylene glycol) (PEG) and hydrophobic oxime-tethered polycaprolactone (OPCL) was successfully prepared by aminooxy terminals of OPCL ligating with aldehyde-terminated PEG (PEG-CHO). Owing to its amphiphilic architecture, PEG-OPCL-PEG self-assembled into the micelles in aqueous media, validated by the measurement of critical micelle concentration (CMC). The MTT assay showed that PEG-OPCL-PEG exhibited low cytotoxicity against NIH/3T3 normal cells. Doxorubicin (DOX) as a model drug was encapsulated into the PEG-OPCL-PEG micelles. Drug release study revealed that the DOX release from micelles was significantly accelerated at mildly acid pH of 5.0 compared to physiological pH of 7.4, suggesting the pH-responsive feature of the drug delivery systems with oxime linkages. Flow cytometry and confocal laser scanning microscopy (CLSM) measurements indicated that these DOX-loaded micelles were easily internalized by living cells. MTT assay against HeLa cancer cells showed DOX-loaded PEG-OPCL-PEG micelles had a high anticancer efficacy. All of these results demonstrate that these polymeric micelles self-assembled from oxime-tethered block copolymers are promising carriers for the pH-triggered intracellular delivery of hydrophobic anticancer drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm200956uDOI Listing

Publication Analysis

Top Keywords

robust tool
8
tool design
8
design ph-sensitive
8
ph-sensitive polymeric
8
polymeric drug
8
oxime linkages
8
drug delivery
8
delivery systems
8
mtt assay
8
peg-opcl-peg micelles
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!