A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sensitive and selective chromogenic sensing of carbon monoxide via reversible axial CO coordination in binuclear rhodium complexes. | LitMetric

Sensitive and selective chromogenic sensing of carbon monoxide via reversible axial CO coordination in binuclear rhodium complexes.

J Am Chem Soc

Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universidad Politécnica de Valencia-Universidad de Valencia, Spain.

Published: October 2011

The study of probes for CO sensing of a family of binuclear rhodium(II) compounds of general formula [Rh(2){(XC(6)H(3))P(XC(6)H(4))}(n)(O(2)CR)(4-n)]·L(2) containing one or two metalated phosphines (in a head-to-tail arrangement) and different axial ligands has been conducted. Chloroform solutions of these complexes underwent rapid color change, from purple to yellow, when air samples containing CO were bubbled through them. The binuclear rhodium complexes were also adsorbed on silica and used as colorimetric probes for "naked eye" CO detection in the gas phase. When the gray-purple colored silica solids containing the rhodium probes were exposed to air containing increasing concentrations of CO, two colors were observed, in agreement with the formation of two different products. The results are consistent with an axial coordination of the CO molecule in one axial position (pink-orange) or in both (yellow). The crystal structure of 3·(CO) ([Rh(2){(C(6)H(4))P(C(6)H(5))(2)}(2)(O(2)CCF(3))(2)]·CO) was solved by single X-ray diffraction techniques. In all cases, the binuclear rhodium complexes studied showed a high selective response to CO with a remarkable low detection limit. For instance, compound 5·(CH(3)CO(2)H)(2) ([Rh(2){(m-CH(3)C(6)H(3))P(m-CH(3)C(6)H(4))(2)}(2)(O(2)CCH(3))(2)]·(CH(3)CO(2)H)(2)) is capable of detection of CO to the "naked eye" at concentrations as low as 0.2 ppm in air. Furthermore, the binding of CO in these rhodium complexes was found to be fully reversible, and release studies of carbon monoxide via thermogravimetric measurements have also been carried out. The importance of the silica support for the maintenance of the CO-displaced L ligands in the vicinity of the probes in a noninnocent manner has been also proved.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja206251rDOI Listing

Publication Analysis

Top Keywords

rhodium complexes
16
binuclear rhodium
12
carbon monoxide
8
axial coordination
8
"naked eye"
8
rhodium
5
complexes
5
sensitive selective
4
selective chromogenic
4
chromogenic sensing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!